-
Notifications
You must be signed in to change notification settings - Fork 108
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Issue when converting CalibratedClassifierCV #1082
Comments
I fixed a similar issue yesterday. I guess this is the same. If you have a pipeline you share, it would help. Otherwise, I think I can replicate the issue I had with the VotingClassifier with this one and fix it with a similar solution. |
Hi @xadupre, thanks for the help. I tried to use the latest version that contains your fixes, but I still get the same result. Here's the pipeline I'm using: column_transformer: ColumnTransformer = make_column_transformer(
(OneHotEncoder(), CATEGORICAL_COLUMNS),
remainder="passthrough",
n_jobs=-1,
verbose=True
)
classifier: RandomForestClassifier = RandomForestClassifier(
n_jobs=-1,
random_state = 42,
verbose = 1,
warm_start = False,
)
pipeline: Pipeline = Pipeline(
steps=[
("column_transformer", column_transformer),
("classifier", classifier)
],
verbose=True
)
pipeline.fit(X_train, y_train)
calibrated_classifier: CalibratedClassifierCV = CalibratedClassifierCV(estimator=pipeline, n_jobs=-1, cv="prefit")
calibrated_classifier.fit(X_test, y_test)
onx = to_onnx(calibrated_classifier, X_train[:1], options={CalibratedClassifierCV: {"zipmap": False}})
with open("classifier.onnx", "wb") as f:
f.write(onx.SerializeToString()) |
Sorry for the delay, I can't find the error message in the code. Could you print the full call stack? |
I'm sorry for the delay, here's the full stack trace: 25 calibrated_classifier: CalibratedClassifierCV = CalibratedClassifierCV(estimator=pipeline, n_jobs=-1, cv="prefit")
26 calibrated_classifier.fit(X_test, y_test)
---> 29 onx = to_onnx(calibrated_classifier, X_train[:1], options={CalibratedClassifierCV: {"zipmap": False}})
30 with open("classifier.onnx", "wb") as f:
31 f.write(onx.SerializeToString())
File ~/git/sklearn-onnx-issue/.venv/lib/python3.12/site-packages/skl2onnx/convert.py:304, in to_onnx(model, X, name, initial_types, target_opset, options, white_op, black_op, final_types, dtype, naming, model_optim, verbose)
302 if verbose >= 1:
303 print("[to_onnx] initial_types=%r" % initial_types)
--> 304 return convert_sklearn(
305 model,
306 initial_types=initial_types,
307 target_opset=target_opset,
308 name=name,
309 options=options,
310 white_op=white_op,
311 black_op=black_op,
312 final_types=final_types,
313 dtype=dtype,
314 verbose=verbose,
315 naming=naming,
316 model_optim=model_optim,
317 )
File ~/git/sklearn-onnx-issue/.venv/lib/python3.12/site-packages/skl2onnx/convert.py:206, in convert_sklearn(model, name, initial_types, doc_string, target_opset, custom_conversion_functions, custom_shape_calculators, custom_parsers, options, intermediate, white_op, black_op, final_types, dtype, naming, model_optim, verbose)
204 if verbose >= 1:
205 print("[convert_sklearn] convert_topology")
--> 206 onnx_model = convert_topology(
207 topology,
208 name,
209 doc_string,
210 target_opset,
211 options=options,
212 remove_identity=model_optim and not intermediate,
213 verbose=verbose,
214 )
215 if verbose >= 1:
216 print("[convert_sklearn] end")
File ~/git/sklearn-onnx-issue/.venv/lib/python3.12/site-packages/skl2onnx/common/_topology.py:1533, in convert_topology(topology, model_name, doc_string, target_opset, options, remove_identity, verbose)
1522 container = ModelComponentContainer(
1523 target_opset,
1524 options=options,
(...)
1528 verbose=verbose,
1529 )
1531 # Traverse the graph from roots to leaves
1532 # This loop could eventually be parallelized.
-> 1533 topology.convert_operators(container=container, verbose=verbose)
1534 container.ensure_topological_order()
1536 if len(container.inputs) == 0:
File ~/git/sklearn-onnx-issue/.venv/lib/python3.12/site-packages/skl2onnx/common/_topology.py:1350, in Topology.convert_operators(self, container, verbose)
1347 for variable in operator.outputs:
1348 _check_variable_out_(variable, operator)
-> 1350 self.call_shape_calculator(operator)
1351 self.call_converter(operator, container, verbose=verbose)
1353 # If an operator contains a sequence of operators,
1354 # output variables are not necessarily known at this stage.
File ~/git/sklearn-onnx-issue/.venv/lib/python3.12/site-packages/skl2onnx/common/_topology.py:1165, in Topology.call_shape_calculator(self, operator)
1163 else:
1164 logger.debug("[Shape2] call infer_types for %r", operator)
-> 1165 operator.infer_types()
File ~/git/sklearn-onnx-issue/.venv/lib/python3.12/site-packages/skl2onnx/common/_topology.py:654, in Operator.infer_types(self)
644 raise MissingShapeCalculator(
645 "Unexpected shape calculator for alias '{}' "
646 "and type '{}'.".format(self.type, type(self.raw_operator))
647 )
648 logger.debug(
649 "[Shape-a] %r fed %r - %r",
650 self,
651 "".join(str(i.is_fed) for i in self.inputs),
652 "".join(str(i.is_fed) for i in self.outputs),
653 )
--> 654 shape_calc(self)
655 logger.debug(
656 "[Shape-b] %r inputs=%r - outputs=%r", self, self.inputs, self.outputs
657 )
File ~/git/sklearn-onnx-issue/.venv/lib/python3.12/site-packages/skl2onnx/common/shape_calculator.py:31, in calculate_linear_classifier_output_shapes(operator)
20 def calculate_linear_classifier_output_shapes(operator):
21 """
22 This operator maps an input feature vector into a scalar label if
23 the number of outputs is one. If two outputs appear in this
(...)
29
30 """
---> 31 _calculate_linear_classifier_output_shapes(operator)
File ~/git/sklearn-onnx-issue/.venv/lib/python3.12/site-packages/skl2onnx/common/shape_calculator.py:43, in _calculate_linear_classifier_output_shapes(operator, decision_path, decision_leaf, enable_type_checking)
41 n_out += 1
42 out_range = [2, 2 + n_out]
---> 43 check_input_and_output_numbers(
44 operator, input_count_range=1, output_count_range=out_range
45 )
46 if enable_type_checking:
47 check_input_and_output_types(
48 operator,
49 good_input_types=[
(...)
54 ],
55 )
File ~/git/sklearn-onnx-issue/.venv/lib/python3.12/site-packages/onnxconverter_common/utils.py:295, in check_input_and_output_numbers(operator, input_count_range, output_count_range)
290 raise RuntimeError(
291 'For operator %s (type: %s), at least %s input(s) is(are) required but we got %s input(s) which are %s'
292 % (operator.full_name, operator.type, min_input_count, len(operator.inputs), operator.input_full_names))
294 if max_input_count is not None and len(operator.inputs) > max_input_count:
--> 295 raise RuntimeError(
296 'For operator %s (type: %s), at most %s input(s) is(are) supported but we got %s input(s) which are %s'
297 % (operator.full_name, operator.type, max_input_count, len(operator.inputs), operator.input_full_names))
299 if min_output_count is not None and len(operator.outputs) < min_output_count:
300 raise RuntimeError(
301 'For operator %s (type: %s), at least %s output(s) is(are) produced but we got %s output(s) which are %s'
302 % (operator.full_name, operator.type, min_output_count, len(operator.outputs), operator.output_full_names))
RuntimeError: For operator SklearnCalibratedClassifierCV (type: SklearnCalibratedClassifierCV), at most 1 input(s) is(are) supported but we got 8 input(s) which are ['xx', 'xx', 'xx', 'xx', 'xx', 'xx', 'xx', 'xx'] I replaced the real column names with the placeholder "xx" |
Hi, I'm having issues converting a CalibratedClassifierCV model to onnx, the error I get is this:
The estimator is a Pipeline containing OneHotEncoder, OrdinalEncoder and RobustScaler, with the classifier being a RandomForestClassifier.
If I try to export only the Pipeline, I don't get this error. Does the CalibratedClassifierCV works only for numerical data? Currently my dataframe contains both numerical and categorical columns. How can I fix this problem?
I'm currently using:
Python 3.12
sklearn==1.4.1.post1
skl2onnx==1.16.0
onnx==1.15.0
onnxruntime==1.17.1
The text was updated successfully, but these errors were encountered: