This repository was archived by the owner on Oct 13, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 107
/
Copy pathtest_discogan.py
184 lines (147 loc) · 6.18 KB
/
test_discogan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# SPDX-License-Identifier: Apache-2.0
import os
import sys
import unittest
import keras2onnx
import keras_contrib
import numpy as np
from keras2onnx import set_converter
from keras2onnx.proto import keras
from os.path import dirname, abspath
sys.path.insert(0, os.path.join(dirname(abspath(__file__)), '../../tests/'))
from test_utils import run_onnx_runtime, convert_InstanceNormalizationLayer
Activation = keras.layers.Activation
BatchNormalization = keras.layers.BatchNormalization
Concatenate = keras.layers.Concatenate
Conv2D = keras.layers.Conv2D
Dense = keras.layers.Dense
Dropout = keras.layers.Dropout
Embedding = keras.layers.Embedding
Flatten = keras.layers.Flatten
InstanceNormalization = keras_contrib.layers.InstanceNormalization
Input = keras.layers.Input
LeakyReLU = keras.layers.LeakyReLU
multiply = keras.layers.multiply
Reshape = keras.layers.Reshape
UpSampling2D = keras.layers.UpSampling2D
ZeroPadding2D = keras.layers.ZeroPadding2D
Sequential = keras.models.Sequential
Model = keras.models.Model
# From https://github.com/eriklindernoren/Keras-GAN/blob/master/discogan/discogan.py
class DiscoGAN():
def __init__(self):
# Input shape
self.img_rows = 128
self.img_cols = 128
self.channels = 3
self.img_shape = (self.img_rows, self.img_cols, self.channels)
# Calculate output shape of D (PatchGAN)
patch = int(self.img_rows / 2**4)
self.disc_patch = (patch, patch, 1)
# Number of filters in the first layer of G and D
self.gf = 64
self.df = 64
# Build and compile the discriminators
self.d_A = self.build_discriminator()
self.d_B = self.build_discriminator()
#-------------------------
# Construct Computational
# Graph of Generators
#-------------------------
# Build the generators
self.g_AB = self.build_generator()
self.g_BA = self.build_generator()
# Input images from both domains
img_A = Input(shape=self.img_shape)
img_B = Input(shape=self.img_shape)
# Translate images to the other domain
fake_B = self.g_AB(img_A)
fake_A = self.g_BA(img_B)
# Translate images back to original domain
reconstr_A = self.g_BA(fake_B)
reconstr_B = self.g_AB(fake_A)
# For the combined model we will only train the generators
self.d_A.trainable = False
self.d_B.trainable = False
# Discriminators determines validity of translated images
valid_A = self.d_A(fake_A)
valid_B = self.d_B(fake_B)
# Objectives
# + Adversarial: Fool domain discriminators
# + Translation: Minimize MAE between e.g. fake B and true B
# + Cycle-consistency: Minimize MAE between reconstructed images and original
self.combined = Model(inputs=[img_A, img_B],
outputs=[ valid_A, valid_B,
fake_B, fake_A,
reconstr_A, reconstr_B ])
def build_generator(self):
"""U-Net Generator"""
def conv2d(layer_input, filters, f_size=4, normalize=True):
"""Layers used during downsampling"""
d = Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input)
d = LeakyReLU(alpha=0.2)(d)
if normalize:
d = InstanceNormalization()(d)
return d
def deconv2d(layer_input, skip_input, filters, f_size=4, dropout_rate=0):
"""Layers used during upsampling"""
u = UpSampling2D(size=2)(layer_input)
u = Conv2D(filters, kernel_size=f_size, strides=1, padding='same', activation='relu')(u)
if dropout_rate:
u = Dropout(dropout_rate)(u)
u = InstanceNormalization()(u)
u = Concatenate()([u, skip_input])
return u
# Image input
d0 = Input(shape=self.img_shape)
# Downsampling
d1 = conv2d(d0, self.gf, normalize=False)
d2 = conv2d(d1, self.gf*2)
d3 = conv2d(d2, self.gf*4)
d4 = conv2d(d3, self.gf*8)
d5 = conv2d(d4, self.gf*8)
d6 = conv2d(d5, self.gf*8)
d7 = conv2d(d6, self.gf*8)
# Upsampling
u1 = deconv2d(d7, d6, self.gf*8)
u2 = deconv2d(u1, d5, self.gf*8)
u3 = deconv2d(u2, d4, self.gf*8)
u4 = deconv2d(u3, d3, self.gf*4)
u5 = deconv2d(u4, d2, self.gf*2)
u6 = deconv2d(u5, d1, self.gf)
u7 = UpSampling2D(size=2)(u6)
output_img = Conv2D(self.channels, kernel_size=4, strides=1,
padding='same', activation='tanh')(u7)
return Model(d0, output_img)
def build_discriminator(self):
def d_layer(layer_input, filters, f_size=4, normalization=True):
"""Discriminator layer"""
d = Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input)
d = LeakyReLU(alpha=0.2)(d)
if normalization:
d = InstanceNormalization()(d)
return d
img = Input(shape=self.img_shape)
d1 = d_layer(img, self.df, normalization=False)
d2 = d_layer(d1, self.df*2)
d3 = d_layer(d2, self.df*4)
d4 = d_layer(d3, self.df*8)
validity = Conv2D(1, kernel_size=4, strides=1, padding='same')(d4)
return Model(img, validity)
set_converter(keras_contrib.layers.InstanceNormalization, convert_InstanceNormalizationLayer)
class TestDiscoGAN(unittest.TestCase):
def setUp(self):
self.model_files = []
def tearDown(self):
for fl in self.model_files:
os.remove(fl)
def test_DiscoGAN(self):
keras_model = DiscoGAN().combined
batch = 5
x = np.random.rand(batch, 128, 128, 3).astype(np.float32)
y = np.random.rand(batch, 128, 128, 3).astype(np.float32)
expected = keras_model.predict([x, y])
onnx_model = keras2onnx.convert_keras(keras_model, keras_model.name)
self.assertTrue(run_onnx_runtime(onnx_model.graph.name, onnx_model, {keras_model.input_names[0]: x, keras_model.input_names[1]: y}, expected, self.model_files, rtol=1.e-2, atol=1.e-2))
if __name__ == "__main__":
unittest.main()