-
Notifications
You must be signed in to change notification settings - Fork 1
/
npabench.py
833 lines (702 loc) · 28.5 KB
/
npabench.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
# Copyright (c) 2023 O. Masoud
import os
import sys
import gc
import functools
import numpy as np
import pickle
import h5py
import tables
import zarr
from timeit import default_timer as timer
import datetime as dt
import tempfile
from pathlib import Path
import shutil
import argparse
import traceback
import matplotlib.pyplot as plt
import matplotlib
import matplotlib.ticker
import cpuinfo
import re
import webbrowser
from io import BytesIO
import base64
import subprocess
import json
import psutil
import distro
import platform
import html
import struct
from typing import Callable
import numpy.typing as npt
def get_powershell_output_object(cmd):
result = subprocess.run(['powershell.exe', '-NonInteractive', '-NoProfile', '-Command', cmd], capture_output=True) # Assuming not needed: '-ExecutionPolicy', 'Unrestricted'
if (result.stderr):
s_err=result.stderr.decode('utf8',errors='ignore')
raise RuntimeError(s_err)
out = result.stdout.decode('utf8',errors='ignore')
if not out: # empty output
return None
return json.loads(out)
def get_disk_info(temp_dir=None):
# temp_dir if provided overrides default temp dir
ret = 'No disk info'
with tempfile.NamedTemporaryFile('wb', dir=temp_dir) as f:
filepath = f.name # we just need a name; file will be deleted
drive = os.path.splitdrive(filepath)[0]
if not drive or len(drive)!=2 or drive[1]!=':': # no drive present
return ret
cmd=r'''
Get-Disk | ForEach-Object {
$disk=$_
$disk |
Get-Partition |
Where-Object DriveLetter -eq '<DRIVELETTER>' |
Select-Object DriveLetter, @{n='Type';e={ $disk.BusType }}, @{n='Model';e={ $disk.Model }}
} |
ConvertTo-Json
'''
cmd = cmd.replace('<DRIVELETTER>',drive[0]) # the first character only
try:
info = get_powershell_output_object(cmd)
except:
info = {}
if info and info is not None:
ret = f'drive: {info["DriveLetter"]}; type: {info["Type"]}; model: {info["Model"]}'
return ret
def get_os_info():
ret = f'{platform.system()} {platform.release()} ({platform.version()})'
info = [distro.name(), distro.version(), distro.codename()]
if any(info):
ret += ': ' + '-'.join(info)
return ret
def elapsed(reset=True):
now = timer()
try:
return now - elapsed.last_timestamp
except:
reset=True
return None
finally:
if reset:
elapsed.last_timestamp = now
class StopWatch():
def __init__(self) -> None:
self.last_timestamp = timer()
def elapsed(self, reset=True):
now = timer()
diff = now - self.last_timestamp
if reset:
self.last_timestamp = now
return diff
def print_on_same_line(*objects,sep=' ',file=sys.stdout):
class A:
def __init__(self):
self.previous_string_length=0
self.string=''
def write(self,string):
#print(f'received "{string}", {[ord(c) for c in string]}')
self.string+=string
def get_and_reset(self):
string_length=len(self.string.expandtabs())
erase_padding=''
if self.previous_string_length>string_length:
erase_padding=' '*(self.previous_string_length-string_length)
output=self.string+erase_padding
self.previous_string_length=string_length
self.string=''
return output
try:
print_on_same_line.writer
except:
print_on_same_line.writer=A()
print(*objects, sep=sep, file=print_on_same_line.writer,end='')
print(print_on_same_line.writer.get_and_reset(), end='\r', flush=True, file=file)
def profile_write(fmt, arr):
gc.disable()
elapsed()
format_rw[fmt][1](arr)
e = elapsed()
gc.enable()
return e
def profile_read(fmt, arr=None):
gc.disable()
elapsed()
a=format_rw[fmt][2]()
e = elapsed()
gc.enable()
if arr is not None:
assert np.array_equal(a,arr)
return e
def pickle_w(fpath,a):
with open(fpath,'wb') as f:
pickle.dump(a,f)
def pickle_r(fpath):
with open(fpath,'rb') as f:
return pickle.load(f)
def hdf5_w(fpath,a):
with h5py.File(fpath, 'w') as f:
f.create_dataset('data',data=a)
def hdf5_r(fpath):
with h5py.File(fpath, "r") as f:
return f["data"][()] # type: ignore
def pytables_w(fpath,a):
with tables.open_file(fpath, 'w') as f:
gcolumns = f.create_group(f.root, 'columns', 'data')
f.create_array(gcolumns, 'data', a, 'data')
def pytables_r(fpath):
with tables.open_file(fpath, 'r') as f:
return f.root.columns.data[()]
# from https://github.com/divideconcept/fastnumpyio/blob/main/fastnumpyio.py
def fast_numpy_save(array):
size=len(array.shape)
if size>255:
raise ValueError('Dimensions greater than 255 are not supported')
return bytes(array.dtype.byteorder.replace('=','<' if sys.byteorder == 'little' else '>')+
array.dtype.kind,
'utf-8')+ \
array.dtype.itemsize.to_bytes(1,byteorder='little')+ \
struct.pack(f'<B{size}Q',size,*array.shape)+ \
array.tobytes()
def fast_numpy_load(data):
dtype = str(data[:2],'utf-8')
dtype += str(data[2])
size = data[3]
shape = struct.unpack_from(f'<{size}Q', data, 4)
return np.ndarray(shape, dtype=dtype, buffer=data[4+size*8:])
fpath = '' # to be set outside
format_rw = {
'np': ('.npy',lambda a: np.save(fpath,a), lambda: np.load(fpath)), # extension needed otherwise will append .npy
'npz': ('.npz',lambda a: np.savez(fpath,a), lambda: np.load(fpath)['arr_0']), # extension needed otherwise will append .npz
'npzc': ('.npz',lambda a: np.savez_compressed(fpath,a), lambda: np.load(fpath)['arr_0']), # extension needed otherwise will append .npz
'hdf5': ('.hdf5',lambda a: hdf5_w(fpath,a), lambda: hdf5_r(fpath)), # give it .hdf5 extension (optional)
'pickle': ('.pkl',lambda a: pickle_w(fpath,a), lambda: pickle_r(fpath)), # give it .pkl extension (optional)
'zarr_zip': ('.zip',lambda a: zarr.save_array(fpath,a), lambda: zarr.load(fpath)), # there's zip and zarr; need to say zip
'zarr': ('.zarr',lambda a: zarr.save_array(fpath,a), lambda: zarr.load(fpath)), # there's zip and zarr; need to say zarr (which gets stored as a directory)
'pytables': ('.h5',lambda a: pytables_w(fpath,a), lambda: pytables_r(fpath)), # give it .h5 extension (optional)
'fast_np': ('.fnp',lambda a: open(fpath,'wb').write(fast_numpy_save(a)), lambda: fast_numpy_load(open(fpath,'rb').read())), # give it .fnp extension (optional)
}
def get_outlier_mask(a, axis=-1, thresh=2.0):
d = np.abs(a - np.median(a, axis=axis, keepdims=True))
mdev = np.median(d, axis=axis, keepdims=True)
mdev[mdev<=np.finfo(a.dtype).eps]=1.0
s = d / mdev
return s>thresh
def relabel_size_axis(ax, max_pwr, start_pwr=0):
ax.set_xticks([2**k for k in range(start_pwr,max_pwr+1)])
ax.set_xticklabels([
'1Byte','2','4','8','16','32','64','128','256','\u00BD'+'KB',
'1','2','4','8KB','16','32','64','128','256','\u00BD'+'MB',
'1','2','4MB','8','16','32','64','128','256','\u00BD'+'GB',
'1','2GB','4','8','16','32','64','128','256','\u00BD'+'TB',
'1','2','4','8','16','32','64','128','256','\u00BD'+'PB'][start_pwr:max_pwr+1],fontsize=8)
ax.tick_params(labelright=True, right=True)
def relabel_time_axis(ax, yres=1.0):
ax.tick_params(labelright=True, right=True)
seconds=np.power(10.0,np.arange(-4,4,yres))
ax.set_yticks(seconds)
ax.set_yticklabels([f'{s:.4f}' if s<.001 else (f'{s:.3f}' if s<10 else f'{s:.0f}') for s in seconds],fontsize=8,fontname ='Times New Roman')
def summary_plot_io_time(accum, data_dist, wr_rd, title):
data_dist = data_dist if isinstance(data_dist, tuple) else (data_dist,)
max_pwr = accum.shape[1]-1
y=np.nanmean(accum,axis=-1)[data_dist,:,:,wr_rd].mean(axis=0) # shape (max_pwr,8)
y_no_outliers = np.ma.array(y,mask=get_outlier_mask(np.log(y),axis=1,thresh=9.0)) # outliers decided in the log domain
y_min = y_no_outliers.min(axis=1)
y_max = y_no_outliers.max(axis=1)
x=np.broadcast_to(np.array([2**k for k in range(max_pwr+1)])[:,np.newaxis],y.shape)
fig=plt.figure(figsize = (12, 8))
fig.subplots_adjust(
top=0.95,
bottom=0.05,
left=0.05,
right=0.95,
hspace=0.2,
wspace=0.25
)
fig.suptitle(title, fontsize=14)
ax1=plt.subplot(211)
ax1.loglog(x,y)
relabel_size_axis(ax1, max_pwr=max_pwr)
relabel_time_axis(ax1)
ax1.set_xlim(left=1, right=2**max_pwr)
ax1.set_ylim(bottom=y[0,:].min(), top=y[max_pwr,:].max())
#xaxis/yaxis.set_minor_formatter(matplotlib.ticker.NullFormatter()) unlikely needed
ax1.xaxis.set_minor_locator(matplotlib.ticker.NullLocator())
ax1.yaxis.set_minor_locator(matplotlib.ticker.NullLocator())
ax1.set_xlabel('Size',loc='right')
ax1.set_ylabel('Sec',loc='top')
ax1.legend(list(format_rw.keys()))
def zoomed_plot(a,b,ax,yres):
ax.loglog(x,y)
relabel_size_axis(ax, max_pwr=max_pwr)
relabel_time_axis(ax, yres=yres)
ax.set_xlim(left=2**a, right=2**b)
ax.set_ylim(bottom=min(y_min[a],y_min[b]), top=max(y_max[a],y_max[b]))
ax.xaxis.set_minor_locator(matplotlib.ticker.NullLocator())
ax.yaxis.set_minor_locator(matplotlib.ticker.NullLocator())
if y_no_outliers[a:b+1,:].mask.any():
plt.text(0.0, 1.01, 'At least one outlier not shown', fontsize=8, transform=ax.transAxes)
def make_zoomed_plot(prev,a_size_str,b_size_str,subplot_value,yres):
if max_pwr>prev:
a,b = size_str_to_pwr(a_size_str), size_str_to_pwr(b_size_str)
if max_pwr<b:
a,b = max(0, max_pwr - (b-a)), max_pwr
zoomed_plot(a,b,plt.subplot(subplot_value),yres=yres)
prev=b
return prev
prev = make_zoomed_plot(0,'8kb','256kb',234,0.15)
prev = make_zoomed_plot(prev,'4mb','16mb',235,0.25)
prev = make_zoomed_plot(prev,'2gb','4gb',236,0.1)
return fig
def summary_plot_io_rate(accum):
data_dist=(0,1)
max_pwr = accum.shape[1]-1
y1=np.nanmean(accum,axis=-1)[data_dist,:,:,0].mean(axis=0) # write time, all arrays
y2=np.nanmean(accum,axis=-1)[data_dist,:,:,1].mean(axis=0) # read time, all arrays
fig=plt.figure(figsize = (12, 8))
fig.subplots_adjust(
top=0.90,
bottom=0.05,
left=0.05,
right=0.95,
hspace=0.2,
wspace=0.25
)
x=np.broadcast_to(np.array([2**k for k in range(max_pwr+1)])[:,np.newaxis],y1.shape) # y1 and y2 have the same shape
start_pwr=size_str_to_pwr('8kb')
if max_pwr<=size_str_to_pwr('1mb'):
start_pwr=0
ax1=plt.subplot(211)
ax1.loglog(x,x/y1/1024/1024/1024)
ax1.set_yscale('linear')
relabel_size_axis(ax1, max_pwr=max_pwr, start_pwr=start_pwr)
ax1.set_xlim(left=2**start_pwr, right=2**max_pwr)
ax1.xaxis.set_minor_locator(matplotlib.ticker.NullLocator())
ax1.grid(axis='y')
ax1.set_ylabel('GB/Sec',loc='top')
ax1.set_title(r'write rate')
ax1.legend(list(format_rw.keys()))
ax2=plt.subplot(212)
ax2.loglog(x,x/y2/1024/1024/1024)
ax2.set_yscale('linear')
relabel_size_axis(ax2, max_pwr=max_pwr, start_pwr=start_pwr)
ax2.set_xlim(left=2**start_pwr, right=2**max_pwr)
ax2.xaxis.set_minor_locator(matplotlib.ticker.NullLocator())
#ax2.set_yticks(np.arange(0,5.5,.5))
ax2.grid(axis='y')
ax2.set_xlabel('Size',loc='right')
ax2.set_title(r'read rate')
fig.suptitle('IO Rate', fontsize=14)
return fig
def summary_plot_file_size(file_size):
max_pwr = file_size.shape[1]-1
y1=file_size[0,:,:]
y2=file_size[1,:,:]
fig=plt.figure(figsize = (12, 8))
fig.subplots_adjust(
top=0.90,
bottom=0.05,
left=0.05,
right=0.95,
hspace=0.2,
wspace=0.25
)
ax1=plt.subplot(211)
x=np.broadcast_to(np.array([2**k for k in range(max_pwr+1)])[:,np.newaxis],y1.shape) # y1 and y2 have the same shape
ax1.loglog(x,x/y1)
ax1.set_yscale('linear')
relabel_size_axis(ax1, max_pwr)
ax1.set_xlim(left=1, right=2**max_pwr)
ax1.grid(axis='y')
ax1.set_ylabel('Compression Ratio',loc='top')
ax1.legend(list(format_rw.keys()))
ax1.set_title('random numbers')
ax2=plt.subplot(212)
ax2.loglog(x,x/y2)
ax2.set_yscale('linear')
relabel_size_axis(ax2, max_pwr)
ax2.set_xlim(left=1, right=2**max_pwr)
ax2.grid(axis='y')
ax2.set_xlabel('Size',loc='right')
ax2.set_title(r'80% sparse random numbers')
fig.suptitle('File Size', fontsize=14)
return fig
def get_lib_version_info():
return {
'numpy' : f'{np.version.version}',
'pickle' : f'{pickle.format_version}', # type: ignore
'h5py' : f'{h5py.version.version} (using hdf5 version: {h5py.version.hdf5_version})',
'tables' : f'{tables.get_pytables_version()} (using hdf5 version: {tables.hdf5_version})',
'zarr' : f'{zarr.__version__}'
}
@functools.lru_cache(maxsize=1) # no need to repopulate
def get_sys_info(temp_dir=None):
return {
'Processor' : cpuinfo.get_cpu_info()['brand_raw'],
'Disk' : get_disk_info(temp_dir=temp_dir),
'Memory' : pwr_to_size_str(round(np.log2(psutil.virtual_memory().total))),
'OS' : get_os_info()
}
def view_on_github_svg():
return r'''
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="122" height="20">
<linearGradient id="b" x2="0" y2="100%">
<stop offset="0" stop-color="#bbb" stop-opacity=".1" />
<stop offset="1" stop-opacity=".1" />
</linearGradient>
<clipPath id="a">
<rect width="122" height="20" rx="3" fill="#fff" />
</clipPath>
<g clip-path="url(#a)">
<path fill="#2f363d" d="M0 0h25v20H0z" />
<path fill="#586069" d="M25 0h97v20H25z" />
<path fill="url(#b)" d="M0 0h122v20H0z" />
</g>
<g fill="#fff" text-anchor="middle" font-family="DejaVu Sans,Verdana,Geneva,sans-serif" font-size="110">
<image x="5" y="3" width="14" height="14"
xlink:href="" />
<text x="735" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="870">View On
GitHub</text><text x="735" y="140" transform="scale(.1)" textLength="870">View On GitHub</text>
</g>
</svg>
'''
def pretty_info_str(info, title, as_html):
s=''
tab=''
if as_html: s += '<div class="monospace">\n'
s+=f'{title}:\n'
if as_html: s += '<table>'
for k,v in info.items():
if as_html: s+='<tr><td>'
s+=f'{k+":":16}'
if as_html: s+='</td><td>'
s+=f'{v}\n'
if as_html: s += '</td></tr>\n'
if as_html: s += '</table></div>\n'
return s
def pretty_lib_version_info_str(libinfo, as_html=False):
return pretty_info_str(libinfo, title='Library versions', as_html=as_html)
def pretty_sys_info_str(sysinfo, as_html=False):
return pretty_info_str(sysinfo, title='System information', as_html=as_html)
# The instance creation time determines when the clock starts ticking
class Progress():
# progress_stream is an iterable that defines the entirety of the steps
# 'ema_rem': exponential moving average of remaining time with alpha set to progress squared
# 'ema_past_rem': exponential moving average of remaining time which is calculated from
# an exponential moving average of per-unit past time, with alpha = 0.05
def __init__(self, progress_stream, reporting_interval=0.5, method='ema_rem') -> None:
self._step_sw = StopWatch()
self._reporting_interval = reporting_interval
self._progress_and_time = zip(progress_stream, Progress._time_stream())
self._t_remaining_smooth = None
self._per_unit_smooth = None
self._method=method
if self._method not in ['ema_rem', 'ema_past_rem']:
raise ValueError(f'Unrecognized method: {self._method}.')
@staticmethod
def _time_stream():
stopwatch=StopWatch()
while True:
yield stopwatch.elapsed(reset=False)
def register_progress(self, report_consumer : Callable=lambda _:None):
self._update()
if self._step_sw.elapsed(reset=False) > self._reporting_interval: #update interval
self._step_sw.elapsed() # reset
report_consumer(self._progress_str)
@property
def _progress_str(self):
assert self._t_remaining_smooth is not None # must call _update first (this also avoid pylance warning)
return (f'{self._progress_value:7.2%}'
f'\t\tElapsed: {dt.timedelta(seconds=round(self._t_elapsed))}'
f'\tRemaining: {dt.timedelta(seconds=round(self._t_remaining_smooth))}'
)
def _update(self):
self._progress_value, self._t_elapsed = next(self._progress_and_time)
p=self._progress_value # shorthand
per_unit = self._t_elapsed/p
if self._method=='ema_past_rem':
alpha=p * .05
if self._per_unit_smooth is None:
self._per_unit_smooth = per_unit
self._per_unit_smooth = (1-alpha)*self._per_unit_smooth + alpha*per_unit
t_remaining = self._per_unit_smooth*(1-p)
else:
alpha = p*p
t_remaining = per_unit*(1-p)
if self._t_remaining_smooth is None:
self._t_remaining_smooth=t_remaining
self._t_remaining_smooth = (1-alpha)*self._t_remaining_smooth + alpha*t_remaining
# This is how powershell does it
def format_size(size):
postfixes = ( 'B', 'KB', 'MB', 'GB', 'TB', 'PB' )
i = 0
while size >= 1024 and i < len(postfixes):
size = size / 1024
i += 1
return f'{round(size,ndigits=2)} {postfixes[i]}'
def size_str_to_pwr(s):
def is_power_of_two(n):
return (n != 0) and (n & (n-1) == 0)
match = re.fullmatch(r'([0-9]+)([K|M|G|T|P]?B)',s.upper())
if match is None:
raise ValueError(f'Size needs to be something like 32MB, 1gb, 256KB, 2048B. A power of two number followed by a unit. Given input was "{s}".')
num_part = int(match.group(1))
if not is_power_of_two(num_part):
raise ValueError(f'The numbers needs to be a power of 2. Given input was {s} with number={num_part}.')
unit_pwr = {'B':0, 'KB':10, 'MB':20, 'GB':30, 'TB':40, 'PB':50}[match.group(2)] # will for sure match due to regex
return unit_pwr + num_part.bit_length()-1
def pwr_to_size_str(pwr):
if pwr<0 or pwr>59:
raise ValueError(f'Power {pwr} is out of range.')
unit_idx = pwr//10
unit=['B','KB','MB','GB','TB','PB'][unit_idx]
return f'{2**(pwr-unit_idx*10)}{unit}'
def add_html_header(s):
HTML_PRE = '''
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Numpy Array I/O Benchmark Summary Report</title>
<style>
.monospace {
font-family: monospace;
}
table td:first-child {
width: 8em;
min-width: 8em;
max-width: 8em;
}
</style>
</head>
<body>
'''
HTML_POST = f'''
<br>
<div class="monospace" style="font-size:11px;">
<br>
<a href="https://github.com/omasoud/np-array-io-bench">
{view_on_github_svg()}
</a>
<br>
Copyright (c) 2022 O. Masoud
<br>
<br>
</div>
</body>
</html>
'''
return HTML_PRE+s+HTML_POST
def display_html_in_tab(s, append_headers=True, temp_dir=None):
# temp_dir if provided overrides default temp dir
if append_headers:
html_str=add_html_header(s)
else:
html_str=s
with tempfile.NamedTemporaryFile('w', delete=False, suffix='.html', encoding='utf-8', dir=temp_dir) as f:
url = 'file://' + f.name
f.write(html_str)
webbrowser.open(url)
def delete_file_or_dir(target_path):
po=Path(target_path)
if po.is_dir(): # one of the zarr formats is a directory
shutil.rmtree(po) # maybe replace with po.rmtree() after python 3.10
elif po.is_file(): # file
po.unlink()
else:
raise ValueError(f'Expected {target_path} to be an existing file or directory, but was not found.')
def cleanup_temp_files(fpath_cache):
count_deleted=0
for target_path in fpath_cache.values():
try:
delete_file_or_dir(target_path)
count_deleted+=1
except ValueError as e:
pass
if count_deleted>0:
print(f'Cleaned up {count_deleted} files/directories. In normal operation, this is '
'unexcpected as clean up would have already happened.')
if __name__ == '__main__':
print('Numpy Array File I/O Benchmark. By O. Masoud.\n')
parser = argparse.ArgumentParser(description='Benchmark load/save speeds and summarize results graphically. A results file is generated and saved. '
'The tool can be also run just to read a results file and show the results graphically using the '
'--summarize-file argument.')
group = parser.add_mutually_exclusive_group(required=False)
group.add_argument('-s','--summarize-file', action='store', metavar='FILE',
help='Only generate summary graphs based on provided results file. This will not run the benchmark.')
group.add_argument('--max-size', action='store', default='1MB',
help='Maximum file size (must be a power of 2) to benchmark (e.g, 8MB, 4GB, 128KB). Default: 1MB. '
'Caution: large sizes can take a very long time or run out of memory or disk space. 16GB '
'takes about 90 minutes on a fast computer.')
parser.add_argument('--temp-dir', action='store', metavar='DIR', help='The default system temp directory is normally used. '
'But if desired, provide a different directory to use for the temporary files. This can be helpful to remove '
'the physical disk I/O by using for example a directory on a ram disk or mounted on tmpfs on linux.')
parser.add_argument('--no-browser', action='store_true', help='Do not launch a browser tab to display the results.')
parser.add_argument('--save-html-file', action='store', metavar='FILE', help='If desired, provide filename so that html report gets saved to it.')
parser.add_argument('--standalone-html', action='store_true',
help='By default the html will reference generated png files for the figures. '
'But if desired this option can encode the pngs directly in the html (making it larger but standalone).')
parser.add_argument('--notebook', action='store_true', help='Plot results in Jupyter Notebook.')
args = parser.parse_args()
if args.standalone_html and args.save_html_file is None:
parser.error('Expecting --save-html-file when using --standalone-html')
fpath_cache = {}
try:
if not args.summarize_file:
time_str = dt.datetime.now().strftime('%Y_%m_%d__%H_%M_%S')
result_filepath = os.path.abspath(f'numpy_array_bench_{time_str}.pkl')
print(f'Results will be written to: {result_filepath}\n')
libinfo = get_lib_version_info()
print(pretty_lib_version_info_str(libinfo))
sysinfo = get_sys_info(args.temp_dir)
print(pretty_sys_info_str(sysinfo))
cmd_str = ' '.join([os.path.basename(sys.argv[0])]+sys.argv[1:])
#MAX_PWR=32 # 32 for 4 gig; 34 for 16 gig
#MAX_PWR=34
MAX_PWR = size_str_to_pwr(args.max_size)
MAX_SIZE : int = 2**MAX_PWR
print(f'Will benchmark numpy arrays with size up to {pwr_to_size_str(MAX_PWR)}.\n')
print('Preparing arrays...')
dtype = np.float32
uni : npt.NDArray[dtype] = np.random.default_rng().random(size=MAX_SIZE//dtype().itemsize, dtype=dtype)
arrays={
'uniform': uni,
'sparse': uni*(uni<.2)*4 # 80% sparse, rescale back to [0,1)
}
print(f'Memory usage: {format_size(sum(a.nbytes for a in arrays.values()))}\n')
def file_or_dir_size(p):
po=Path(p)
if po.is_dir():
return sum(p.stat().st_size for p in po.rglob('*'))
elif po.is_file():
return po.stat().st_size
else:
print(f'Warning: {p} is not an existing file or directory. Returning 1 for size query.')
return 1
def get_fpath(fmt, temp_dir=None):
# temp_dir if provided overrides default temp dir
if fmt not in fpath_cache:
with tempfile.NamedTemporaryFile('wb', suffix=format_rw[fmt][0], dir=temp_dir) as f:
fpath_cache[fmt]=f.name
return fpath_cache[fmt]
def calc_reps(size_pwr):
return min(max(round(1.5**(33-size_pwr)),2),100)
# return values 0.0 to 1.0 corresponding to the progress achieved by successive inner loops of the main benchmark
def iteration_progress():
FUDGE = float(2**19) # adding this, representing a constant overhead, reduces the imbalance in progress rate of change
bytes_per_inner_iter=[]
_ = [[[[[(lambda v:bytes_per_inner_iter.append(v))(float(2**size_pwr) + FUDGE)
for _ in range(2)] # 1 write and 1 read
for _ in range(calc_reps(size_pwr))] # reps
for _ in range(len(format_rw))] # formats
for size_pwr in range(MAX_PWR+1)] # MAX_PWR+1
for _ in range(len(arrays))] # arrays
a=np.array(bytes_per_inner_iter)
yield from np.cumsum(a)/a.sum()
print('Running benchmark...')
progress = Progress(progress_stream=iteration_progress(), reporting_interval=0.2, method='ema_rem')
accum = np.full((len(arrays), MAX_PWR+1, len(format_rw), 2, calc_reps(0)),np.nan) # 2 for write&read, 10 for max reps
file_size = np.full((len(arrays), MAX_PWR+1, len(format_rw)),np.nan)
for ddist,arr in enumerate(arrays.values()):
for size_pwr in range(MAX_PWR+1): # 1 byte to 4GB or whatever
sized_arr = arr[:2**size_pwr//dtype().itemsize]
total_reps = calc_reps(size_pwr)
# print(ddist,size_pwr,total_reps)
for j,fmt in enumerate(format_rw.keys()):
fpath=get_fpath(fmt, args.temp_dir) # reuse the same file path for each format
for rep in range(total_reps): # some reasonable reps
accum[ddist,size_pwr,j,0,rep] = profile_write(fmt, sized_arr)
progress.register_progress(report_consumer=print_on_same_line)
file_size[ddist,size_pwr,j] = file_or_dir_size(fpath)
accum[ddist,size_pwr,j,1,rep] = profile_read(fmt, sized_arr if rep==0 else None) # validate only on first read
progress.register_progress(report_consumer=print_on_same_line)
try:
delete_file_or_dir(fpath) # to keep files from accumulating
except PermissionError: # zarr_zip format seems to refuse to allow deletion here
pass
#print(f'Warning: failed to delete {fpath}.')
print_on_same_line()
print('Saving results...')
with open(result_filepath,'wb') as f:
pickle.dump([accum,
file_size,
libinfo,
sysinfo,
cmd_str],f)
# Delete temps
cleanup_temp_files(fpath_cache)
else: # summarize
result_filepath = args.summarize_file
#data = np.load(result_filepath)
#accum = data['accum']
#file_size = data['file_size']
with open(result_filepath,'rb') as f:
accum, file_size, libinfo, sysinfo, cmd_str = pickle.load(f)
print(f'Benchmark results loaded from {result_filepath}\n')
print('The library and system information where it was run:\n')
print(pretty_lib_version_info_str(libinfo))
print(pretty_sys_info_str(sysinfo))
print(f'This result was generated with command line: {cmd_str}\n')
# Outputs
figs = [
summary_plot_io_time(accum=accum, data_dist=(0,1), wr_rd=0, title='Write speed'),
summary_plot_io_time(accum=accum, data_dist=(0,1), wr_rd=1, title='Read speed'),
summary_plot_io_rate(accum=accum),
summary_plot_file_size(file_size=file_size)
]
def fig_to_html_str(fig):
img = BytesIO()
fig.savefig(img, format='png', bbox_inches='tight', dpi=72.0)
img.seek(0)
s = base64.b64encode(img.getvalue()).decode('utf-8')
html_str = f'<img src="data:image/png;base64, {s}">'
return html_str
#TODO switch to use mpld3 in the future when it becomes capable of showing figures with the same quality
# html_str='\n'.join([mpld3.fig_to_html(fig, no_extras=True) for fig in figs])
def html_run_info_str(libinfo,sysinfo,cmd_str):
s=''
s+=pretty_lib_version_info_str(libinfo, as_html=True)
s+='<br>'
s+=pretty_sys_info_str(sysinfo,as_html=True)
s+='<br>'
s+=f'<div class="monospace">This result was generated with command line: <b>{html.escape(cmd_str)}</b></div>\n'
return s
html_str='\n'.join([fig_to_html_str(fig) for fig in figs])
html_str += html_run_info_str(libinfo,sysinfo,cmd_str)
if not args.no_browser:
print('Showing results in browser tab...')
display_html_in_tab(html_str, append_headers=True, temp_dir=args.temp_dir)
if args.save_html_file is not None:
root, f = os.path.split(args.save_html_file)
out_fileprefix = os.path.splitext(f)[0] # remove .html or whatever extension
out_filepath = os.path.join(root,out_fileprefix+'.html')
if not args.standalone_html:
html_str = ''
for i,fig in enumerate(figs):
png_filename = f'{out_fileprefix}_{i+1}.png'
html_str += f'<img src="{png_filename}"/>\n'
fig.savefig(os.path.join(root,png_filename), dpi=72.0)
html_str += html_run_info_str(libinfo,sysinfo,cmd_str)
print(f'Saving report to {out_filepath}.')
with open(out_filepath,'w',encoding='utf-8') as f:
f.write(add_html_header(html_str))
if args.notebook:
plt.show()
for fig in figs:
plt.close(fig) # prevents showing them in jupyter
print()
print('Finished.')
except ValueError as e:
print('\nCannot proceed due to the following:')
print(e)
cleanup_temp_files(fpath_cache)
except Exception as e:
print('\nUnexpected error. Please report to author:')
print(e)
cleanup_temp_files(fpath_cache)
print()
print('-----TRACEBACK------')
print(traceback.format_exc()) # for debugging