
The java.util.concurrent Synchronizer Framework
Doug Lea

SUNY Oswego
Oswego NY 13126
 dl@cs.oswego.edu

ABSTRACT
Most synchronizers (locks, barriers, etc.) in the J2SE1.5
java.util.concurrent package are constructed using a small
framework based on class AbstractQueuedSynchro-
nizer. This framework provides common mechanics for
atomically managing synchronization state, blocking and
unblocking threads, and queuing. The paper describes the
rationale, design, implementation, usage, and performance of this
framework.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming –
Parallel Programming

General Terms
Algorithms, Measurement, Performance, Design.

Keywords
Synchronization, Java

1. INTRODUCTION
Javatm release J2SE-1.5 introduces package java.util.concurrent, a
collection of medium-level concurrency support classes created
via Java Community Process (JCP) Java Specification Request
(JSR) 166. Among these components are a set of synchronizers –
abstract data type (ADT) classes that maintain an internal
synchronization state (for example, representing whether a lock
is locked or unlocked), operations to update and inspect that
state, and at least one method that will cause a calling thread to
block if the state requires it, resuming when some other thread
changes the synchronization state to permit it. Examples include
various forms of mutual exclusion locks, read-write locks,
semaphores, barriers, futures, event indicators, and handoff
queues.

As is well-known (see e.g., [2]) nearly any synchronizer can be
used to implement nearly any other. For example, it is possible to
build semaphores from reentrant locks, and vice versa. However,
doing so often entails enough complexity, overhead, and
inflexibility to be at best a second-rate engineering option.
Further, it is conceptually unattractive. If none of these constructs
are intrinsically more primitive than the others, developers
should not be compelled to arbitrarily choose one of them as a
basis for building others. Instead, JSR166 establishes a small
framework centered on class AbstractQueuedSynchro-
nizer, that provides common mechanics that are used by most

of the provided synchronizers in the package, as well as other
classes that users may define themselves.

The remainder of this paper discusses the requirements for this
framework, the main ideas behind its design and implementation,
sample usages, and some measurements showing its performance
characteristics.

2. REQUIREMENTS

2.1 Functionality
Synchronizers possess two kinds of methods [7]: at least one
acquire operation that blocks the calling thread unless/until the
synchronization state allows it to proceed, and at least one
release operation that changes synchronization state in a way that
may allow one or more blocked threads to unblock.

The java.util.concurrent package does not define a single unified
API for synchronizers. Some are defined via common interfaces
(e.g., Lock), but others contain only specialized versions. So,
acquire and release operations take a range of names and forms
across different classes. For example, methods Lock.lock,
Semaphore.acquire, CountDownLatch.await, and
FutureTask.get all map to acquire operations in the
framework. However, the package does maintain consistent
conventions across classes to support a range of common usage
options. When meaningful, each synchronizer supports:

• Nonblocking synchronization attempts (for example,
tryLock) as well as blocking versions.

• Optional timeouts, so applications can give up waiting.

• Cancellability via interruption, usually separated into one
version of acquire that is cancellable, and one that isn't.

Synchronizers may vary according to whether they manage only
exclusive states – those in which only one thread at a time may
continue past a possible blocking point – versus possible shared
states in which multiple threads can at least sometimes proceed.
Regular lock classes of course maintain only exclusive state, but
counting semaphores, for example, may be acquired by as many
threads as the count permits. To be widely useful, the framework
must support both modes of operation.

The java.util.concurrent package also defines interface
Condition, supporting monitor-style await/signal operations
that may be associated with exclusive Lock classes, and whose
implementations are intrinsically intertwined with their
associated Lock classes.

2.2 Performance Goals
Java built-in locks (accessed using synchronized methods
and blocks) have long been a performance concern, and there is a
sizable literature on their construction (e.g., [1], [3]). However,
the main focus of such work has been on minimizing space
overhead (because any Java object can serve as a lock) and on
minimizing time overhead when used in mostly-single-threaded

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CSJP’04, July 26, 2004, St John's, Newfoundland, CA.

contexts on uniprocessors. Neither of these are especially
important concerns for synchronizers: Programmers construct
synchronizers only when needed, so there is no need to compact
space that would otherwise be wasted, and synchronizers are
used almost exclusively in multithreaded designs (increasingly
often on multiprocessors) under which at least occasional
contention is to be expected. So the usual JVM strategy of
optimizing locks primarily for the zero-contention case, leaving
other cases to less predictable "slow paths" [12] is not the right
tactic for typical multithreaded server applications that rely
heavily on java.util.concurrent.

Instead, the primary performance goal here is scalability: to
predictably maintain efficiency even, or especially, when
synchronizers are contended. Ideally, the overhead required to
pass a synchronization point should be constant no matter how
many threads are trying to do so. Among the main goals is to
minimize the total amount of time during which some thread is
permitted to pass a synchronization point but has not done so.
However, this must be balanced against resource considerations,
including total CPU time requirements, memory traffic, and
thread scheduling overhead. For example, spinlocks usually
provide shorter acquisition times than blocking locks, but usually
waste cycles and generate memory contention, so are not often
applicable.

These goals carry across two general styles of use. Most
applications should maximize aggregate throughput, tolerating, at
best, probabilistic guarantees about lack of starvation. However
in applications such as resource control, it is far more important
to maintain fairness of access across threads, tolerating poor
aggregate throughput. No framework can decide between these
conflicting goals on behalf of users; instead different fairness
policies must be accommodated.

No matter how well-crafted they are internally, synchronizers
will create performance bottlenecks in some applications. Thus,
the framework must make it possible to monitor and inspect basic
operations to allow users to discover and alleviate bottlenecks.
This minimally (and most usefully) entails providing a way to
determine how many threads are blocked.

3. DESIGN AND IMPLEMENTATION

The basic ideas behind a synchronizer are quite straightforward.
An acquire operation proceeds as:

 while (synchronization state does not allow acquire) {
 enqueue current thread if not already queued;
 possibly block current thread;
 }
 dequeue current thread if it was queued;

And a release operation is:

 update synchronization state;
 if (state may permit a blocked thread to acquire)
 unblock one or more queued threads;

Support for these operations requires the coordination of three
basic components:

• Atomically managing synchronization state

• Blocking and unblocking threads

• Maintaining queues

It might be possible to create a framework that allows each of
these three pieces to vary independently. However, this would
neither be very efficient nor usable. For example, the information
kept in queue nodes must mesh with that needed for unblocking,
and the signatures of exported methods depend on the nature of
synchronization state.

The central design decision in the synchronizer framework was
to choose a concrete implementation of each of these three
components, while still permitting a wide range of options in
how they are used. This intentionally limits the range of
applicability, but provides efficient enough support that there is
practically never a reason not to use the framework (and instead
build synchronizers from scratch) in those cases where it does
apply.

3.1 Synchronization State
Class AbstractQueuedSynchronizer maintains synchro-
nization state using only a single (32bit) int, and exports
getState, setState, and compareAndSetState
operations to access and update this state. These methods in turn
rely on java.util.concurrent.atomic support providing JSR133
(Java Memory Model) compliant volatile semantics on reads
and writes, and access to native compare-and-swap or load-
linked/store-conditional instructions to implement compare-
AndSetState, that atomically sets state to a given new value
only if it holds a given expected value.

Restricting synchronization state to a 32bit int was a pragmatic
decision. While JSR166 also provides atomic operations on 64bit
long fields, these must still be emulated using internal locks on
enough platforms that the resulting synchronizers would not
perform well. In the future, it seems likely that a second base
class, specialized for use with 64bit state (i.e., with long control
arguments), will be added. However, there is not now a
compelling reason to include it in the package. Currently, 32 bits
suffice for most applications. Only one java.util.concurrent
synchronizer class, CyclicBarrier, would require more bits
to maintain state, so instead uses locks (as do most higher-level
utilities in the package).

Concrete classes based on AbstractQueuedSynchronizer
must define methods tryAcquire and tryRelease in terms
of these exported state methods in order to control the acquire
and release operations. The tryAcquire method must return
true if synchronization was acquired, and the tryRelease
method must return true if the new synchronization state may
allow future acquires. These methods accept a single int
argument that can be used to communicate desired state; for
example in a reentrant lock, to re-establish the recursion count
when re-acquiring the lock after returning from a condition wait.
Many synchronizers do not need such an argument, and so just
ignore it.

3.2 Blocking
Until JSR166, there was no Java API available to block and
unblock threads for purposes of creating synchronizers that are
not based on built-in monitors. The only candidates were
Thread.suspend and Thread.resume, which are
unusable because they encounter an unsolvable race problem: If
an unblocking thread invokes resume before the blocking
thread has executed suspend, the resume operation will have
no effect.

The java.util.concurrent.locks package includes a LockSup-
port class with methods that address this problem. Method
LockSupport.park blocks the current thread unless or until
a LockSupport.unpark has been issued. (Spurious wakeups
are also permitted.) Calls to unpark are not "counted", so
multiple unparks before a park only unblock a single park.
Additionally, this applies per-thread, not per-synchronizer. A
thread invoking park on a new synchronizer might return
immediately because of a "leftover" unpark from a previous
usage. However, in the absence of an unpark, its next
invocation will block. While it would be possible to explicitly
clear this state, it is not worth doing so. It is more efficient to
invoke park multiple times when it happens to be necessary.

This simple mechanism is similar to those used, at some level, in
the Solaris-9 thread library [11], in WIN32 "consumable events",
and in the Linux NPTL thread library, and so maps efficiently to
each of these on the most common platforms Java runs on.
(However, the current Sun Hotspot JVM reference
implementation on Solaris and Linux actually uses a pthread
condvar in order to fit into the existing runtime design.) The
park method also supports optional relative and absolute
timeouts, and is integrated with JVM Thread.interrupt
support — interrupting a thread unparks it.

3.3 Queues
The heart of the framework is maintenance of queues of blocked
threads, which are restricted here to FIFO queues. Thus, the
framework does not support priority-based synchronization.

These days, there is little controversy that the most appropriate
choices for synchronization queues are non-blocking data
structures that do not themselves need to be constructed using
lower-level locks. And of these, there are two main candidates:
variants of Mellor-Crummey and Scott (MCS) locks [9], and
variants of Craig, Landin, and Hagersten (CLH) locks [5][8][10].
Historically, CLH locks have been used only in spinlocks.
However, they appeared more amenable than MCS for use in the
synchronizer framework because they are more easily adapted to
handle cancellation and timeouts, so were chosen as a basis. The
resulting design is far enough removed from the original CLH
structure to require explanation.

A CLH queue is not very queue-like, because its enqueuing and
dequeuing operations are intimately tied to its uses as a lock. It is
a linked queue accessed via two atomically updatable fields,
head and tail, both initially pointing to a dummy node.

A new node, node, is enqueued using an atomic operation:
 do { pred = tail;
 } while(!tail.compareAndSet(pred, node));
The release status for each node is kept in its predecessor node.
So, the "spin" of a spinlock looks like:
 while (pred.status != RELEASED) ; // spin
A dequeue operation after this spin simply entails setting the
head field to the node that just got the lock:
 head = node;

Among the advantages of CLH locks are that enqueuing and
dequeuing are fast, lock-free, and obstruction free (even under
contention, one thread will always win an insertion race so will
make progress); that detecting whether any threads are waiting is
also fast (just check if head is the same as tail); and that
release status is decentralized, avoiding some memory
contention.

In the original versions of CLH locks, there were not even links
connecting nodes. In a spinlock, the pred variable can be held
as a local. However, Scott and Scherer[10] showed that by
explicitly maintaining predecessor fields within nodes, CLH
locks can deal with timeouts and other forms of cancellation: If a
node's predecessor cancels, the node can slide up to use the
previous node's status field.

The main additional modification needed to use CLH queues for
blocking synchronizers is to provide an efficient way for one
node to locate its successor. In spinlocks, a node need only
change its status, which will be noticed on next spin by its
successor, so links are unnecessary. But in a blocking
synchronizer, a node needs to explicitly wake up (unpark) its
successor.

An AbstractQueuedSynchronizer queue node contains a
next link to its successor. But because there are no applicable
techniques for lock-free atomic insertion of double-linked list
nodes using compareAndSet, this link is not atomically set as
part of insertion; it is simply assigned:
 pred.next = node;
after the insertion. This is reflected in all usages. The next link
is treated only as an optimized path. If a node's successor does
not appear to exist (or appears to be cancelled) via its next field,
it is always possible to start at the tail of the list and traverse
backwards using the pred field to accurately check if there
really is one.

A second set of modifications is to use the status field kept in
each node for purposes of controlling blocking, not spinning. In
the synchronizer framework, a queued thread can only return
from an acquire operation if it passes the tryAcquire method
defined in a concrete subclass; a single "released" bit does not
suffice. But control is still needed to ensure that an active thread
is only allowed to invoke tryAcquire when it is at the head of
the queue; in which case it may fail to acquire, and (re)block.
This does not require a per-node status flag because permission
can be determined by checking that the current node's
predecessor is the head. And unlike the case of spinlocks, there
is not enough memory contention reading head to warrant
replication. However, cancellation status must still be present in
the status field.

The queue node status field is also used to avoid needless calls to
park and unpark. While these methods are relatively fast as
blocking primitives go, they encounter avoidable overhead in the
boundary crossing between Java and the JVM runtime and/or OS.
Before invoking park, a thread sets a "signal me" bit, and then
rechecks synchronization and node status once more before
invoking park. A releasing thread clears status. This saves
threads from needlessly attempting to block often enough to be
worthwhile, especially for lock classes in which lost time waiting
for the next eligible thread to acquire a lock accentuates other
contention effects. This also avoids requiring a releasing thread
to determine its successor unless the successor has set the signal
bit, which in turn eliminates those cases where it must traverse

head tail

node

node's status

pred

multiple nodes to cope with an apparently null next field unless
signalling occurs in conjunction with cancellation.

Perhaps the main difference between the variant of CLH locks
used in the synchronizer framework and those employed in other
languages is that garbage collection is relied on for managing
storage reclamation of nodes, which avoids complexity and
overhead. However, reliance on GC does still entail nulling of
link fields when they are sure to never to be needed. This can
normally be done when dequeuing. Otherwise, unused nodes
would still be reachable, causing them to be uncollectable.

Some further minor tunings, including lazy initialization of the
initial dummy node required by CLH queues upon first
contention, are described in the source code documentation in the
J2SE1.5 release.

Omitting such details, the general form of the resulting
implementation of the basic acquire operation (exclusive,
noninterruptible, untimed case only) is:

 if (!tryAcquire(arg)) {
 node = create and enqueue new node;
 pred = node's effective predecessor;
 while (pred is not head node || !tryAcquire(arg)) {
 if (pred's signal bit is set)
 park();
 else
 compareAndSet pred's signal bit to true;
 pred = node's effective predecessor;
 }
 head = node;
 }

And the release operation is:

 if (tryRelease(arg) && head node's signal bit is set) {
 compareAndSet head's signal bit to false;
 unpark head's successor, if one exists
 }

The number of iterations of the main acquire loop depends, of
course, on the nature of tryAcquire. Otherwise, in the
absence of cancellation, each component of acquire and release is
a constant-time O(1) operation, amortized across threads,
disregarding any OS thread scheduling occuring within park.

Cancellation support mainly entails checking for interrupt or
timeout upon each return from park inside the acquire loop. A
cancelled thread due to timeout or interrupt sets its node status
and unparks its successor so it may reset links. With cancellation,
determining predecessors and successors and resetting status may
include O(n) traversals (where n is the length of the queue).
Because a thread never again blocks for a cancelled operation,
links and status fields tend to restabilize quickly.

3.4 Condition Queues
The synchronizer framework provides a ConditionObject
class for use by synchronizers that maintain exclusive
synchronization and conform to the Lock interface. Any number
of condition objects may be attached to a lock object, providing
classic monitor-style await, signal, and signalAll
operations, including those with timeouts, along with some
inspection and monitoring methods.

The ConditionObject class enables conditions to be
efficiently integrated with other synchronization operations,
again by fixing some design decisions. This class supports only
Java-style monitor access rules in which condition operations are
legal only when the lock owning the condition is held by the
current thread (See [4] for discussion of alternatives). Thus, a
ConditionObject attached to a ReentrantLock acts in
the same way as do built-in monitors (via Object.wait etc),
differing only in method names, extra functionality, and the fact
that users can declare multiple conditions per lock.

A ConditionObject uses the same internal queue nodes as
synchronizers, but maintains them on a separate condition queue.
The signal operation is implemented as a queue transfer from the
condition queue to the lock queue, without necessarily waking up
the signalled thread before it has re-acquired its lock.

The basic await operation is:
 create and add new node to condition queue;
 release lock;
 block until node is on lock queue;
 re-acquire lock;

And the signal operation is:
 transfer the first node from condition queue to lock queue;

Because these operations are performed only when the lock is
held, they can use sequential linked queue operations (using a
nextWaiter field in nodes) to maintain the condition queue.
The transfer operation simply unlinks the first node from the
condition queue, and then uses CLH insertion to attach it to the
lock queue.

The main complication in implementing these operations is
dealing with cancellation of condition waits due to timeouts or
Thread.interrupt. A cancellation and signal occuring at
approximately the same time encounter a race whose outcome
conforms to the specifications for built-in monitors. As revised in
JSR133, these require that if an interrupt occurs before a signal,
then the await method must, after re-acquiring the lock, throw
InterruptedException. But if it is interrupted after a
signal, then the method must return without throwing an
exception, but with its thread interrupt status set.

To maintain proper ordering, a bit in the queue node status
records whether the node has been (or is in the process of being)
transferred. Both the signalling code and the cancelling code try
to compareAndSet this status. If a signal operation loses this race,
it instead transfers the next node on the queue, if one exists. If a
cancellation loses, it must abort the transfer, and then await lock
re-acquisition. This latter case introduces a potentially
unbounded spin. A cancelled wait cannot commence lock re-
acquisition until the node has been successfully inserted on the
lock queue, so must spin waiting for the CLH queue insertion
compareAndSet being performed by the signalling thread to
succeed. The need to spin here is rare, and employs a
Thread.yield to provide a scheduling hint that some other
thread, ideally the one doing the signal, should instead run. While
it would be possible to implement here a helping strategy for the
cancellation to insert the node, the case is much too rare to justify
the added overhead that this would entail. In all other cases, the
basic mechanics here and elsewhere use no spins or yields, which
maintains reasonable performance on uniprocessors.

4. USAGE
Class AbstractQueuedSynchronizer ties together the
above functionality and serves as a "template method pattern" [6]
base class for synchronizers. Subclasses define only the methods
that implement the state inspections and updates that control
acquire and release. However, subclasses of Ab-
stractQueuedSynchronizer are not themselves usable as
synchronizer ADTs, because the class necessarily exports the
methods needed to internally control acquire and release policies,
which should not be made visible to users of these classes. All
java.util.concurrent synchronizer classes declare a private inner
AbstractQueuedSynchronizer subclass and delegate all
synchronization methods to it. This also allows public methods to
be given names appropriate to the synchronizer.

For example, here is a minimal Mutex class, that uses
synchronization state zero to mean unlocked, and one to mean
locked. This class does not need the value arguments supported
for synchronization methods, so uses zero, and otherwise ignores
them.

class Mutex {
 class Sync
 extends AbstractQueuedSynchronizer {
 public boolean tryAcquire(int ignore) {
 return compareAndSetState(0, 1);
 }
 public boolean tryRelease(int ignore) {
 setState(0); return true;
 }
 }
 private final Sync sync = new Sync();
 public void lock() { sync.acquire(0); }
 public void unlock() { sync.release(0); }
}

A fuller version of this example, along with other usage guidance
may be found in the J2SE documentation. Many variants are of
course possible. For example, tryAcquire could employ "test-
and-test-and-set" by checking the state value before trying to
change it.

It may be surprising that a construct as performance-sensitive as
a mutual exclusion lock is intended to be defined using a
combination of delegation and virtual methods. However, these
are the sorts of OO design constructions that modern dynamic
compilers have long focussed on. They tend to be good at
optimizing away this overhead, at least in code in which
synchronizers are invoked frequently.

Class AbstractQueuedSynchronizer also supplies a
number of methods that assist synchronizer classes in policy
control. For example, it includes timeout and interruptible
versions of the basic acquire method. And while discussion so far
has focussed on exclusive-mode synchronizers such as locks, the
AbstractQueuedSynchronizer class also contains a
parallel set of methods (such as acquireShared) that differ in
that the tryAcquireShared and tryReleaseShared
methods can inform the framework (via their return values) that
further acquires may be possible, ultimately causing it to wake up
multiple threads by cascading signals.

Although it is not usually sensible to serialize (persistently store
or transmit) a synchronizer, these classes are often used in turn to
construct other classes, such as thread-safe collections, that are
commonly serialized. The AbstractQueuedSynchronizer
and ConditionObject classes provide methods to serialize
synchronization state, but not the underlying blocked threads or

other intrinsically transient bookkeeping. Even so, most
synchronizer classes merely reset synchronization state to initial
values on deserialization, in keeping with the implicit policy of
built-in locks of always deserializing to an unlocked state. This
amounts to a no-op, but must still be explicitly supported to
enable deserialization of final fields.

4.1 Controlling Fairness
Even though they are based on FIFO queues, synchronizers are
not necessarily fair. Notice that in the basic acquire algorithm
(Section 3.3), tryAcquire checks are performed before
queuing. Thus a newly acquiring thread can “steal” access that is
"intended" for the first thread at the head of the queue.

This barging FIFO strategy generally provides higher aggregate
throughput than other techniques. It reduces the time during
which a contended lock is available but no thread has it because
the intended next thread is in the process of unblocking. At the
same time, it avoids excessive, unproductive contention by only
allowing one (the first) queued thread to wake up and try to
acquire upon any release. Developers creating synchronizers
may further accentuate barging effects in cases where
synchronizers are expected to be held only briefly by defining
tryAcquire to itself retry a few times before passing back
control.

Barging FIFO synchronizers have only probablistic fairness
properties. An unparked thread at the head of the lock queue has

an unbiased chance of winning a race with any incoming barging
thread, reblocking and retrying if it loses. However, if incoming
threads arrive faster than it takes an unparked thread to unblock,
the first thread in the queue will only rarely win the race, so will
almost always reblock, and its successors will remain blocked.
With briefly-held synchronizers, it is common for multiple
bargings and releases to occur on multiprocessors during the time
the first thread takes to unblock. As seen below, the net effect is
to maintain high rates of progress of one or more threads while
still at least probabilistically avoiding starvation.

When greater fairness is required, it is a relatively simple matter
to arrange it. Programmers requiring strict fairness can define
tryAcquire to fail (return false) if the current thread is not at
the head of the queue, checking for this using method
getFirstQueuedThread, one of a handful of supplied
inspection methods.

A faster, less strict variant is to also allow tryAcquire to
succeed if the the queue is (momentarily) empty. In this case,
multiple threads encountering an empty queue may race to be the
first to acquire, normally without enqueuing at least one of them.
This strategy is adopted in all java.util.concurrent synchronizers
supporting a "fair" mode.

While they tend to be useful in practice, fairness settings have no
guarantees, because the Java Language Specification does not
provide scheduling guarantees. For example, even with a strictly
fair synchronizer, a JVM could decide to run a set of threads
purely sequentially if they never otherwise need to block waiting
for each other. In practice, on a uniprocessor, such threads are

first

queued threads

barging thread

tryAcquire

...

likely to each run for a time quantum before being pre-emptively
context-switched. If such a thread is holding an exclusive lock, it
will soon be momentarily switched back, only to release the lock
and block now that it is known that another thread needs the lock,
thus further increasing the periods during which a synchronizer is
available but not acquired. Synchronizer fairness settings tend to
have even greater impact on multiprocessors, which generate
more interleavings, and hence more opportunities for one thread
to discover that a lock is needed by another thread.

Even though they may perform poorly under high contention
when protecting briefly-held code bodies, fair locks work well,
for example, when they protect relatively long code bodies
and/or with relatively long inter-lock intervals, in which case
barging provides little performance advantage and but greater
risk of indefinite postponement. The synchronizer framework
leaves such engineering decisions to its users.

4.2 Synchronizers
Here are sketches of how java.util.concurrent synchronizer
classes are defined using this framework:

The ReentrantLock class uses synchronization state to hold
the (recursive) lock count. When a lock is acquired, it also
records the identity of the current thread to check recursions and
detect illegal state exceptions when the wrong thread tries to
unlock. The class also uses the provided ConditionObject,
and exports other monitoring and inspection methods. The class
supports an optional "fair" mode by internally declaring two
different AbstractQueuedSynchronizer subclasses (the
fair one disabling barging) and setting each ReentrantLock
instance to use the appropriate one upon construction.

The ReentrantReadWriteLock class uses 16 bits of the
synchronization state to hold the write lock count, and the
remaining 16 bits to hold the read lock count. The WriteLock
is otherwise structured in the same way as ReentrantLock.
The ReadLock uses the acquireShared methods to enable
multiple readers.

The Semaphore class (a counting semaphore) uses the
synchronization state to hold the current count. It defines
acquireShared to decrement the count or block if
nonpositive, and tryRelease to increment the count, possibly
unblocking threads if it is now positive.

The CountDownLatch class uses the synchronization state to
represent the count. All acquires pass when it reaches zero.

The FutureTask class uses the synchronization state to
represent the run-state of a future (initial, running, cancelled,
done). Setting or cancelling a future invokes release,
unblocking threads waiting for its computed value via acquire.

The SynchronousQueue class (a CSP-style handoff) uses
internal wait-nodes that match up producers and consumers. It
uses the synchronization state to allow a producer to proceed
when a consumer takes the item, and vice-versa.

Users of the java.util.concurrent package may of course define
their own synchronizers for custom applications. For example,
among those that were considered but not adopted in the package
are classes providing the semantics of various flavors of WIN32
events, binary latches, centrally managed locks, and tree-based
barriers.

5. PERFORMANCE
While the synchronizer framework supports many other styles of
synchronization in addition to mutual exclusion locks, lock
performance is simplest to measure and compare. Even so, there
are many different approaches to measurement. The experiments
here are designed to reveal overhead and throughput.

In each test, each thread repeatedly updates a pseudo-random
number computed using function nextRandom(int seed):
 int t = (seed % 127773) * 16807 –
 (seed / 127773) * 2836;
 return (t > 0)? t : t + 0x7fffffff;
On each iteration a thread updates, with probability S, a shared
generator under a mutual exclusion lock, else it updates its own
local generator, without a lock. This results in short-duration
locked regions, minimizing extraneous effects when threads are
preempted while holding locks. The randomness of the function
serves two purposes: it is used in deciding whether to lock or not
(it is a good enough generator for current purposes), and also
makes code within loops impossible to trivially optimize away.

Four kinds of locks were compared: Builtin, using synchronized
blocks; Mutex, using a simple Mutex class like that illustrated in
section 4; Reentrant, using ReentrantLock; and Fair, using
ReentrantLock set in its "fair" mode. All tests used build 46
(approximately the same as beta2) of the Sun J2SE1.5 JDK in
"server" mode. Test programs performed 20 uncontended runs
before collecting measurements, to eliminate warm-up effects.
Tests ran for ten million iterations per thread, except Fair mode
tests were run only one million iterations.

Tests were performed on four x86-based machines and four
UltraSparc-based machines. All x86 machines were running
Linux using a RedHat NPTL-based 2.4 kernel and libraries. All
UltraSparc machines were running Solaris-9. All systems were at
most lightly loaded while testing. The nature of the tests did not
demand that they be otherwise completely idle. The "4P" name
reflects the fact a dual hyperthreaded (HT) Xeon acts more like a
4-way than a 2-way machine. No attempt was made to normalize
across the differences here. As seen below, the relative costs of
synchronization do not bear a simple relationship to numbers of
processors, their types, or speeds.

Table 1 Test Platforms

Name Processors Type Speed (Mhz)

1P 1 Pentium3 900

2P 2 Pentium3 1400

2A 2 Athlon 2000

4P 2 HT Pentium4/Xeon 2400

1U 1 UltraSparc2 650

4U 4 UltraSparc2 450

8U 8 UltraSparc3 750

24U 24 UltraSparc3 750

5.1 Overhead
Uncontended overhead was measured by running only one
thread, subtracting the time per iteration taken with a version
setting S=0 (zero probability of accessing shared random) from a
run with S=1. Table 2 displays these estimates of the per-lock
overhead of synchronized code over unsynchronized code, in

nanoseconds. The Mutex class comes closest to testing the basic
cost of the framework. The additional overhead for Reentrant
locks indicates the cost of recording the current owner thread and
of error-checking, and for Fair locks the additional cost of first
checking whether the queue is empty.

Table 2 also shows the cost of tryAcquire versus the "fast
path" of a built-in lock. Differences here mostly reflect the costs
of using different atomic instructions and memory barriers across
locks and machines. On multiprocessors, these instructions tend
to completely overwhelm all others. The main differences
between Builtin and synchronizer classes are apparently due to
Hotspot locks using a compareAndSet for both locking and
unlocking, while these synchronizers use a compareAndSet for
acquire and a volatile write (i.e., with a memory barrier on
multiprocessors, and reordering constraints on all processors) on
release. The absolute and relative costs of each vary across
machines.

At the other extreme, Table 3 shows per-lock overheads with S=1
and running 256 concurrent threads, creating massive lock
contention. Under complete saturation, barging-FIFO locks have
about an order of magnitude less overhead (and equivalently
greater throughput) than Builtin locks, and often two orders of
magnitude less than Fair locks. This demonstrates the
effectiveness of the barging-FIFO policy in maintaining thread
progress even under extreme contention.

Table 2 Uncontended Per-Lock Overhead in Nanoseconds

Machine Builtin Mutex Reentrant Fair

1P 18 9 31 37

2P 58 71 77 81

2A 13 21 31 30

4P 116 95 109 117

1U 90 40 58 67

4U 122 82 100 115

8U 160 83 103 123

24U 161 84 108 119

Table 3 Saturated Per-Lock Overhead in Nanoseconds

Machine Builtin Mutex Reentrant Fair

1P 521 46 67 8327

2P 930 108 132 14967

2A 748 79 84 33910

4P 1146 188 247 15328

1U 879 153 177 41394

4U 2590 347 368 30004

8U 1274 157 174 31084

24U 1983 160 182 32291

Table 3 also illustrates that even with low internal overhead,
context switching time completely determines performance for
Fair locks. The listed times are roughly proportional to those for
blocking and unblocking threads on the various platforms.

Additionally, a follow-up experiment (using machine 4P only)
shows that with the very briefly held locks used here, fairness
settings had only a small impact on overall variance. Differences
in termination times of threads were recorded as a coarse-grained
measure of variability. Times on machine 4P had standard
deviation of 0.7% of mean for Fair, and 6.0% for Reentrant. As a
contrast, to simulate long-held locks, a version of the test was run
in which each thread computed 16K random numbers while
holding each lock. Here, total run times were nearly identical
(9.79s for Fair, 9.72s for Reentrant). Fair mode variability
remained small, with standard deviation of 0.1% of mean, while
Reentrant rose to 29.5% of mean.

5.2Throughput
Usage of most synchronizers will range between the extremes of
no contention and saturation. This can be experimentally
examined along two dimensions, by altering the contention
probability of a fixed set of threads, and/or by adding more
threads to a set with a fixed contention probability. To illustrate
these effects, tests were run with different contention
probablilities and numbers of threads, all using Reentrant locks.
The accompanying figures use a slowdown metric:

slowdown= t

S⋅b⋅n1−S ⋅b⋅max 1, n
p


Here, t is the total observed execution time, b is the baseline time
for one thread with no contention or synchronization, n is the
number of threads, p is the number of processors, and S remains
the proportion of shared accesses. This value is the ratio of
observed time to the (generally unattainable) ideal execution time
as computed using Amdahl's law for a mix of sequential and
parallel tasks. The ideal time models an execution in which,
without any synchronization overhead, no thread blocks due to
conflicts with any other. Even so, under very low contention, a
few test results displayed very small speedups compared to this
ideal, presumably due to slight differences in optimization,
pipelining, etc., across baseline versus test runs.

The figures use a base 2 log scale. For example, a value of 1.0
means that a measured time was twice as long as ideally possible,
and a value of 4.0 means 16 times slower. Use of logs
ameliorates reliance on an arbitrary base time (here, the time to
compute random numbers), so results with different base
computations should show similar trends. The tests used
contention probabilities from 1/128 (labelled as "0.008") to 1,
stepping in powers of 2, and numbers of threads from 1 to 1024,
stepping in half-powers of 2.

On uniprocessors (1P and 1U) performance degrades with
increasing contention, but generally not with increasing numbers
of threads. Multiprocessors generally encounter much worse
slowdowns under contention. The graphs for multiprocessors
show an early peak in which contention involving only a few
threads usually produces the worst relative performance. This
reflects a transitional region of performance, in which barging
and signalled threads are about equally likely to obtain locks,
thus frequently forcing each other to block. In most cases, this is
followed by a smoother region, as the locks are almost never
available, causing access to resemble the near-sequential pattern
of uniprocessors; approaching this sooner on machines with more
processors. Notice for example that the values for full contention
(labelled "1.000") exhibit relatively worse slowdowns on
machines with fewer processors.

0 1 1.
5

2 2.
5

3 3.
5

4 4.
5

5 5.
5

6 6.
5

7 7.
5

8 8.
5

9 9.
5

1
0

-0.1
-0.05

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

1U

0.008

0.016

0.031

0.063

0.125

0.250

0.500

1.000

Log2 Threads

Lo
g

2
 S

lo
w

d
o

w
n

0 1 1.
5

2 2.
5

3 3.
5

4 4.
5

5 5.
5

6 6.
5

7 7.
5

8 8.
5

9 9.
5

1
0

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1P

0.008

0.016

0.031

0.063

0.125

0.250

0.500

1.000

Log2 Threads

Lo
g

2
 S

lo
w

d
ow

n

0 1 1.
5

2 2.
5

3 3.
5

4 4.
5

5 5.
5

6 6.
5

7 7.
5

8 8.
5

9 9.
5

1
0

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

2P

0.008

0.016

0.031

0.063

0.125

0.250

0.500

1.000

Log2 Threads

L
og

2
S

lo
w

d
ow

n

0 1 1.
5

2 2.
5

3 3.
5

4 4.
5

5 5.
5

6 6.
5

7 7.
5

8 8.
5

9 9.
5

1
0

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2A

0.008

0.016

0.031

0.063

0.125

0.250

0.500

1.000

Log2 Threads

L
og

2
S

lo
w

d
ow

n

0 1 1.
5

2 2.
5

3 3.
5

4 4.
5

5 5.
5

6 6.
5

7 7.
5

8 8.
5

9 9.
5

1
0

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

4P

0.008

0.016

0.031

0.063

0.125

0.250

0.500

1.000

Log2 Threads

Lo
g

2
S

lo
w

d
o

w
n

0 1 1.
5

2 2.
5

3 3.
5

4 4.
5

5 5.
5

6 6.
5

7 7.
5

8 8.
5

9 9.
5

1
0

-0.25

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

4U

0.008

0.016

0.031

0.063

0.125

0.250

0.500

1.000

Log2 Threads

Lo
g

2
 S

lo
w

d
o

w
n

0 1 1.
5

2 2.
5

3 3.
5

4 4.
5

5 5.
5

6 6.
5

7 7.
5

8 8.
5

9 9.
5

1
0

0
0.25

0.5
0.75

1
1.25
1.5

1.75
2

2.25
2.5

2.75
3

3.25
3.5

8U

0.008

0.016

0.031

0.063

0.125

0.250

0.500

1.000

Log2 Threads

Lo
g

2
 S

lo
w

d
o

w
n

0 1 1.
5

2 2.
5

3 3.
5

4 4.
5

5 5.
5

6 6.
5

7 7.
5

8 8.
5

9 9.
5

1
0

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

24U

0.008

0.016

0.031

0.063

0.125

0.250

0.500

1.000

Log2 Threads

Lo
g

2
S

lo
w

d
ow

n

On the basis of these results, it appears likely that further tuning
of blocking (park/unpark) support to reduce context switching
and related overhead could provide small but noticeable
improvements in this framework. Additionally, it may pay off for
synchronizer classes to employ some form of adaptive spinning
for briefly-held highly-contended locks on multiprocessors, to
avoid some of the flailing seen here. While adaptive spins tend to
be very difficult to make work well across different contexts, it
is possible to build custom forms of locks using this framework,
targetted for specific applications that encounter these kinds of
usage profiles.

6. CONCLUSIONS
As of this writing, the java.util.concurrent synchronizer
framework is too new to evaluate in practice. It is unlikely to see
widespread usage until well after final release of J2SE1.5, and
there will surely be unexpected consequences of its design, API,

implementation, and performance. However, at this point, the
framework appears successful in meeting the goals of providing
an efficient basis for creating new synchronizers.

7. ACKNOWLEDGMENTS
Thanks to Dave Dice for countless ideas and advice during the
development of this framework, to Mark Moir and Michael Scott
for urging consideration of CLH queues, to David Holmes for
critiquing early versions of the code and API, to Victor
Luchangco and Bill Scherer for reviewing previous incarnations
of the source code, and to the other members of the JSR166
Expert Group (Joe Bowbeer, Josh Bloch, Brian Goetz, David
Holmes, and Tim Peierls) as well as Bill Pugh, for helping with
design and specifications and commenting on drafts of this paper.
Portions of this work were made possible by a DARPA PCES
grant, NSF grant EIA-0080206 (for access to the 24way Sparc)
and a Sun Collaborative Research Grant.

8. REFERENCES
[1] Agesen, O., D. Detlefs, A. Garthwaite, R. Knippel, Y. S.

Ramakrishna, and D. White. An Efficient Meta-lock for
Implementing Ubiquitous Synchronization. ACM OOPSLA
Proceedings, 1999.

[2] Andrews, G. Concurrent Programming. Wiley, 1991.

[3] Bacon, D. Thin Locks: Featherweight Synchronization for
Java. ACM PLDI Proceedings, 1998.

[4] Buhr, P. M. Fortier, and M. Coffin. Monitor Classification,
ACM Computing Surveys, March 1995.

[5] Craig, T. S. Building FIFO and priority-queueing spin locks
from atomic swap. Technical Report TR 93-02-02,
Department of Computer Science, University of
Washington, Feb. 1993.

[6] Gamma, E., R. Helm, R. Johnson, and J. Vlissides. Design
Patterns, Addison Wesley, 1996.

[7] Holmes, D. Synchronisation Rings, PhD Thesis, Macquarie
University, 1999.

[8] Magnussen, P., A. Landin, and E. Hagersten. Queue locks
on cache coherent multiprocessors. 8th Intl. Parallel
Processing Symposium, Cancun, Mexico, Apr. 1994.

[9] Mellor-Crummey, J.M., and M. L. Scott. Algorithms for
Scalable Synchronization on Shared-Memory
Multiprocessors. ACM Trans. on Computer Systems,
February 1991

[10] M. L. Scott and W N. Scherer III. Scalable Queue-Based
Spin Locks with Timeout. 8th ACM Symp. on Principles
and Practice of Parallel Programming, Snowbird, UT, June
2001.

[11] Sun Microsystems. Multithreading in the Solaris Operating
Environment. White paper available at
http://wwws.sun.com/software/solaris/whitepapers.html
2002.

[12] Zhang, H., S. Liang, and L. Bak. Monitor Conversion in a
Multithreaded Computer System. United States Patent
6,691,304. 2004.

