-
Notifications
You must be signed in to change notification settings - Fork 101
/
model.py
347 lines (297 loc) · 14.8 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import ranger
import torch
from torch import nn
import torch.nn.functional as F
import pytorch_lightning as pl
import copy
from feature_transformer import DoubleFeatureTransformerSlice
# 3 layer fully connected network
L1 = 3072
L2 = 15
L3 = 32
def coalesce_ft_weights(model, layer):
weight = layer.weight.data
indices = model.feature_set.get_virtual_to_real_features_gather_indices()
weight_coalesced = weight.new_zeros((model.feature_set.num_real_features, weight.shape[1]))
for i_real, is_virtual in enumerate(indices):
weight_coalesced[i_real, :] = sum(weight[i_virtual, :] for i_virtual in is_virtual)
return weight_coalesced
def get_parameters(layers):
return [p for layer in layers for p in layer.parameters()]
class LayerStacks(nn.Module):
def __init__(self, count):
super(LayerStacks, self).__init__()
self.count = count
self.l1 = nn.Linear(2 * L1 // 2, (L2 + 1) * count)
# Factorizer only for the first layer because later
# there's a non-linearity and factorization breaks.
# This is by design. The weights in the further layers should be
# able to diverge a lot.
self.l1_fact = nn.Linear(2 * L1 // 2, L2 + 1, bias=True)
self.l2 = nn.Linear(L2*2, L3 * count)
self.output = nn.Linear(L3, 1 * count)
# Cached helper tensor for choosing outputs by bucket indices.
# Initialized lazily in forward.
self.idx_offset = None
self._init_layers()
def _init_layers(self):
l1_weight = self.l1.weight
l1_bias = self.l1.bias
l1_fact_weight = self.l1_fact.weight
l1_fact_bias = self.l1_fact.bias
l2_weight = self.l2.weight
l2_bias = self.l2.bias
output_weight = self.output.weight
output_bias = self.output.bias
with torch.no_grad():
l1_fact_weight.fill_(0.0)
l1_fact_bias.fill_(0.0)
output_bias.fill_(0.0)
for i in range(1, self.count):
# Force all layer stacks to be initialized in the same way.
l1_weight[i*(L2+1):(i+1)*(L2+1), :] = l1_weight[0:(L2+1), :]
l1_bias[i*(L2+1):(i+1)*(L2+1)] = l1_bias[0:(L2+1)]
l2_weight[i*L3:(i+1)*L3, :] = l2_weight[0:L3, :]
l2_bias[i*L3:(i+1)*L3] = l2_bias[0:L3]
output_weight[i:i+1, :] = output_weight[0:1, :]
self.l1.weight = nn.Parameter(l1_weight)
self.l1.bias = nn.Parameter(l1_bias)
self.l1_fact.weight = nn.Parameter(l1_fact_weight)
self.l1_fact.bias = nn.Parameter(l1_fact_bias)
self.l2.weight = nn.Parameter(l2_weight)
self.l2.bias = nn.Parameter(l2_bias)
self.output.weight = nn.Parameter(output_weight)
self.output.bias = nn.Parameter(output_bias)
def forward(self, x, ls_indices):
# Precompute and cache the offset for gathers
if self.idx_offset == None or self.idx_offset.shape[0] != x.shape[0]:
self.idx_offset = torch.arange(0,x.shape[0]*self.count,self.count, device=ls_indices.device)
indices = ls_indices.flatten() + self.idx_offset
l1s_ = self.l1(x).reshape((-1, self.count, L2 + 1))
l1f_ = self.l1_fact(x)
# https://stackoverflow.com/questions/55881002/pytorch-tensor-indexing-how-to-gather-rows-by-tensor-containing-indices
# basically we present it as a list of individual results and pick not only based on
# the ls index but also based on batch (they are combined into one index)
l1c_ = l1s_.view(-1, L2 + 1)[indices]
l1c_, l1c_out = l1c_.split(L2, dim=1)
l1f_, l1f_out = l1f_.split(L2, dim=1)
l1x_ = l1c_ + l1f_
# multiply sqr crelu result by (127/128) to match quantized version
l1x_ = torch.clamp(torch.cat([torch.pow(l1x_, 2.0) * (127/128), l1x_], dim=1), 0.0, 1.0)
l2s_ = self.l2(l1x_).reshape((-1, self.count, L3))
l2c_ = l2s_.view(-1, L3)[indices]
l2x_ = torch.clamp(l2c_, 0.0, 1.0)
l3s_ = self.output(l2x_).reshape((-1, self.count, 1))
l3c_ = l3s_.view(-1, 1)[indices]
l3x_ = l3c_ + l1f_out + l1c_out
return l3x_
def get_coalesced_layer_stacks(self):
# During training the buckets are represented by a single, wider, layer.
# This representation needs to be transformed into individual layers
# for the serializer, because the buckets are interpreted as separate layers.
for i in range(self.count):
with torch.no_grad():
l1 = nn.Linear(2*L1 // 2, L2+1)
l2 = nn.Linear(L2*2, L3)
output = nn.Linear(L3, 1)
l1.weight.data = self.l1.weight[i*(L2+1):(i+1)*(L2+1), :] + self.l1_fact.weight.data
l1.bias.data = self.l1.bias[i*(L2+1):(i+1)*(L2+1)] + self.l1_fact.bias.data
l2.weight.data = self.l2.weight[i*L3:(i+1)*L3, :]
l2.bias.data = self.l2.bias[i*L3:(i+1)*L3]
output.weight.data = self.output.weight[i:(i+1), :]
output.bias.data = self.output.bias[i:(i+1)]
yield l1, l2, output
class NNUE(pl.LightningModule):
"""
feature_set - an instance of FeatureSet defining the input features
lambda_ = 0.0 - purely based on game results
0.0 < lambda_ < 1.0 - interpolated score and result
lambda_ = 1.0 - purely based on search scores
gamma - the multiplicative factor applied to the learning rate after each epoch
lr - the initial learning rate
"""
def __init__(self, feature_set, start_lambda=1.0, end_lambda=1.0, max_epoch=800, gamma=0.992, lr=8.75e-4, param_index=0, num_psqt_buckets=8, num_ls_buckets=8):
super(NNUE, self).__init__()
self.num_psqt_buckets = num_psqt_buckets
self.num_ls_buckets = num_ls_buckets
self.input = DoubleFeatureTransformerSlice(feature_set.num_features, L1 + self.num_psqt_buckets)
self.feature_set = feature_set
self.layer_stacks = LayerStacks(self.num_ls_buckets)
self.start_lambda = start_lambda
self.end_lambda = end_lambda
self.max_epoch = max_epoch
self.gamma = gamma
self.lr = lr
self.param_index = param_index
self.nnue2score = 600.0
self.weight_scale_hidden = 64.0
self.weight_scale_out = 16.0
self.quantized_one = 127.0
max_hidden_weight = self.quantized_one / self.weight_scale_hidden
max_out_weight = (self.quantized_one * self.quantized_one) / (self.nnue2score * self.weight_scale_out)
self.weight_clipping = [
{'params' : [self.layer_stacks.l1.weight], 'min_weight' : -max_hidden_weight, 'max_weight' : max_hidden_weight, 'virtual_params' : self.layer_stacks.l1_fact.weight },
{'params' : [self.layer_stacks.l2.weight], 'min_weight' : -max_hidden_weight, 'max_weight' : max_hidden_weight },
{'params' : [self.layer_stacks.output.weight], 'min_weight' : -max_out_weight, 'max_weight' : max_out_weight },
]
self._init_layers()
'''
We zero all virtual feature weights because there's not need for them
to be initialized; they only aid the training of correlated features.
'''
def _zero_virtual_feature_weights(self):
weights = self.input.weight
with torch.no_grad():
for a, b in self.feature_set.get_virtual_feature_ranges():
weights[a:b, :] = 0.0
self.input.weight = nn.Parameter(weights)
def _init_layers(self):
self._zero_virtual_feature_weights()
self._init_psqt()
def _init_psqt(self):
input_weights = self.input.weight
input_bias = self.input.bias
# 1.0 / kPonanzaConstant
scale = 1 / self.nnue2score
with torch.no_grad():
initial_values = self.feature_set.get_initial_psqt_features()
assert len(initial_values) == self.feature_set.num_features
for i in range(self.num_psqt_buckets):
input_weights[:, L1 + i] = torch.FloatTensor(initial_values) * scale
# Bias doesn't matter because it cancels out during
# inference during perspective averaging. We set it to 0
# just for the sake of it. It might still diverge away from 0
# due to gradient imprecision but it won't change anything.
input_bias[L1 + i] = 0.0
self.input.weight = nn.Parameter(input_weights)
self.input.bias = nn.Parameter(input_bias)
'''
Clips the weights of the model based on the min/max values allowed
by the quantization scheme.
'''
def _clip_weights(self):
for group in self.weight_clipping:
for p in group['params']:
if 'min_weight' in group or 'max_weight' in group:
p_data_fp32 = p.data
min_weight = group['min_weight']
max_weight = group['max_weight']
if 'virtual_params' in group:
virtual_params = group['virtual_params']
xs = p_data_fp32.shape[0] // virtual_params.shape[0]
ys = p_data_fp32.shape[1] // virtual_params.shape[1]
expanded_virtual_layer = virtual_params.repeat(xs, ys)
if min_weight is not None:
min_weight_t = p_data_fp32.new_full(p_data_fp32.shape, min_weight) - expanded_virtual_layer
p_data_fp32 = torch.max(p_data_fp32, min_weight_t)
if max_weight is not None:
max_weight_t = p_data_fp32.new_full(p_data_fp32.shape, max_weight) - expanded_virtual_layer
p_data_fp32 = torch.min(p_data_fp32, max_weight_t)
else:
if min_weight is not None and max_weight is not None:
p_data_fp32.clamp_(min_weight, max_weight)
else:
raise Exception('Not supported.')
p.data.copy_(p_data_fp32)
'''
This method attempts to convert the model from using the self.feature_set
to new_feature_set. Currently only works for adding virtual features.
'''
def set_feature_set(self, new_feature_set):
if self.feature_set.name == new_feature_set.name:
return
# TODO: Implement this for more complicated conversions.
# Currently we support only a single feature block.
if len(self.feature_set.features) > 1:
raise Exception('Cannot change feature set from {} to {}.'.format(self.feature_set.name, new_feature_set.name))
# Currently we only support conversion for feature sets with
# one feature block each so we'll dig the feature blocks directly
# and forget about the set.
old_feature_block = self.feature_set.features[0]
new_feature_block = new_feature_set.features[0]
# next(iter(new_feature_block.factors)) is the way to get the
# first item in a OrderedDict. (the ordered dict being str : int
# mapping of the factor name to its size).
# It is our new_feature_factor_name.
# For example old_feature_block.name == "HalfKP"
# and new_feature_factor_name == "HalfKP^"
# We assume here that the "^" denotes factorized feature block
# and we would like feature block implementers to follow this convention.
# So if our current feature_set matches the first factor in the new_feature_set
# we only have to add the virtual feature on top of the already existing real ones.
if old_feature_block.name == next(iter(new_feature_block.factors)):
# We can just extend with zeros since it's unfactorized -> factorized
weights = self.input.weight
padding = weights.new_zeros((new_feature_block.num_virtual_features, weights.shape[1]))
weights = torch.cat([weights, padding], dim=0)
self.input.weight = nn.Parameter(weights)
self.feature_set = new_feature_set
else:
raise Exception('Cannot change feature set from {} to {}.'.format(self.feature_set.name, new_feature_set.name))
def forward(self, us, them, white_indices, white_values, black_indices, black_values, psqt_indices, layer_stack_indices):
wp, bp = self.input(white_indices, white_values, black_indices, black_values)
w, wpsqt = torch.split(wp, L1, dim=1)
b, bpsqt = torch.split(bp, L1, dim=1)
l0_ = (us * torch.cat([w, b], dim=1)) + (them * torch.cat([b, w], dim=1))
l0_ = torch.clamp(l0_, 0.0, 1.0)
l0_s = torch.split(l0_, L1 // 2, dim=1)
l0_s1 = [l0_s[0] * l0_s[1], l0_s[2] * l0_s[3]]
# We multiply by 127/128 because in the quantized network 1.0 is represented by 127
# and it's more efficient to divide by 128 instead.
l0_ = torch.cat(l0_s1, dim=1) * (127/128)
psqt_indices_unsq = psqt_indices.unsqueeze(dim=1)
wpsqt = wpsqt.gather(1, psqt_indices_unsq)
bpsqt = bpsqt.gather(1, psqt_indices_unsq)
# The PSQT values are averaged over perspectives. "Their" perspective
# has a negative influence (us-0.5 is 0.5 for white and -0.5 for black,
# which does both the averaging and sign flip for black to move)
x = self.layer_stacks(l0_, layer_stack_indices) + (wpsqt - bpsqt) * (us - 0.5)
return x
def step_(self, batch, batch_idx, loss_type):
# We clip weights at the start of each step. This means that after
# the last step the weights might be outside of the desired range.
# They should be also clipped accordingly in the serializer.
self._clip_weights()
us, them, white_indices, white_values, black_indices, black_values, outcome, score, psqt_indices, layer_stack_indices = batch
# convert the network and search scores to an estimate match result
# based on the win_rate_model, with scalings and offsets optimized
in_scaling = 340
out_scaling = 380
offset = 270
scorenet = self(us, them, white_indices, white_values, black_indices, black_values, psqt_indices, layer_stack_indices) * self.nnue2score
q = ( scorenet - offset) / in_scaling # used to compute the chance of a win
qm = (-scorenet - offset) / in_scaling # used to compute the chance of a loss
qf = 0.5 * (1.0 + q.sigmoid() - qm.sigmoid()) # estimated match result (using win, loss and draw probs).
p = ( score - offset) / out_scaling
pm = (-score - offset) / out_scaling
pf = 0.5 * (1.0 + p.sigmoid() - pm.sigmoid())
t = outcome
actual_lambda = self.start_lambda + (self.end_lambda - self.start_lambda) * (self.current_epoch / self.max_epoch)
pt = pf * actual_lambda + t * (1.0 - actual_lambda)
loss = torch.pow(torch.abs(pt - qf), 2.5).mean()
self.log(loss_type, loss)
return loss
def training_step(self, batch, batch_idx):
return self.step_(batch, batch_idx, 'train_loss')
def validation_step(self, batch, batch_idx):
self.step_(batch, batch_idx, 'val_loss')
def test_step(self, batch, batch_idx):
self.step_(batch, batch_idx, 'test_loss')
def configure_optimizers(self):
LR = self.lr
train_params = [
{'params' : get_parameters([self.input]), 'lr' : LR, 'gc_dim' : 0 },
{'params' : [self.layer_stacks.l1_fact.weight], 'lr' : LR },
{'params' : [self.layer_stacks.l1_fact.bias], 'lr' : LR },
{'params' : [self.layer_stacks.l1.weight], 'lr' : LR },
{'params' : [self.layer_stacks.l1.bias], 'lr' : LR },
{'params' : [self.layer_stacks.l2.weight], 'lr' : LR },
{'params' : [self.layer_stacks.l2.bias], 'lr' : LR },
{'params' : [self.layer_stacks.output.weight], 'lr' : LR },
{'params' : [self.layer_stacks.output.bias], 'lr' : LR },
]
# Increasing the eps leads to less saturated nets with a few dead neurons.
# Gradient localisation appears slightly harmful.
optimizer = ranger.Ranger(train_params, betas=(.9, 0.999), eps=1.0e-7, gc_loc=False, use_gc=False)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=self.gamma)
return [optimizer], [scheduler]