forked from fireball0213/LSTF-Linear
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
354 lines (311 loc) · 17.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
from models.TsfKNN import TsfKNN
from models.baselines import ZeroForecast, MeanForecast
from models.baselines import Autoregression,ExponentialMovingAverage,DoubleExponentialSmoothing,LastValueForecast
from models.DLinear import Linear_NN, NLinear, DLinear
from models.ThetaMethod import ThetaMethodForecast
from sklearn.linear_model import LinearRegression
from models.ResidualModel import ResidualModel
from models.Transformer import Transformer
from models.PatchTST import PatchTST
from utils.transforms import IdentityTransform, Normalization, Standardization,MeanNormalization,BoxCox,FourierTransform
from torch.utils.data import DataLoader
from trainer import MLTrainer
from dataset.dataset import get_dataset
from dataset.ETT_data import Dataset_ETT_hour,merge_weather
from dataset.data_visualizer import data_visualize,plot_forecast,plot_day_forecast,plot_random_forecast
import matplotlib.pyplot as plt
import os
import argparse
import numpy as np
import random
import torch
from models.ARIMA import ARIMAForecast
from utils.metrics import mse, mae, mape, smape, mase,evaluate_metrics
import torch.nn as nn
def get_args():
parser = argparse.ArgumentParser()
# dataset config
parser.add_argument('--train_data_path', type=str, default='./dataset/m4/Daily-train.csv')
parser.add_argument('--test_data_path', type=str, default='./dataset/m4/Daily-test.csv')
parser.add_argument('--data_path', type=str, default='./dataset/ETT/ETTh1.csv')
# parser.add_argument('--data_path', type=str, default='./dataset/ETT/ETTh2.csv')
# parser.add_argument('--data_path', type=str, default='./dataset/ETT/ETTm1.csv')
# parser.add_argument('--data_path', type=str, default='./dataset/illness/national_illness.csv')
# parser.add_argument('--data_path', type=str, default='./dataset/electricity/electricity.csv')
# parser.add_argument('--data_path', type=str, default='./dataset/exchange_rate/exchange_rate.csv')
# parser.add_argument('--data_path', type=str, default='./dataset/traffic/traffic.csv')
# parser.add_argument('--data_path', type=str, default='./dataset/weather/weather.csv')
parser.add_argument('--period', type=int, default=24, help='period used in TsfKNN and MASE,ETT:24,illness:52')
# parser.add_argument('--dataset', type=str, default='M4', help='dataset type, options: [M4, ETT, Custom]')
parser.add_argument('--dataset', type=str, default='ETT', help='dataset type, options: [M4, ETT, Custom]')
# parser.add_argument('--dataset', type=str, default='Custom', help='dataset type, options: [M4, ETT, Custom]')
parser.add_argument('--model', type=str, default='DLinear', help='model name')
# parser.add_argument('--target', type=str, default='OT', help='target feature')
parser.add_argument('--target', type=str, default='Multi', help='target feature')
parser.add_argument('--ratio_train', type=int, default=0.6, help='train dataset length')
parser.add_argument('--ratio_val', type=int, default=0.2, help='validate dataset length')
parser.add_argument('--ratio_test', type=int, default=0.2, help='input sequence length')
parser.add_argument('--frequency', type=str, default='h', help='frequency of time series data, options: [h, m]')
# forcast task config
parser.add_argument('--seq_len', type=int, default=96, help='input sequence length')
parser.add_argument('--pred_len', type=int, default=96, help='prediction sequence length')
# ThetaMethod define
parser.add_argument('--theta_list', type=list, default=[0, 0.5, 1, 2], help='theta used in ThetaMethod')
# ResidualModel define
parser.add_argument('--trend_model', type=str, default='Autoregression', help='trend model for ResidualModel')
parser.add_argument('--seasonal_model', type=str, default='Autoregression', help='seasonal model for ResidualModel')
parser.add_argument('--decompose_based', action='store_true', help='使用两种模型分别预测')
# EMA define
parser.add_argument('--alpha', type=float, default=0.9, help='alpha used in ExponentialMovingAverage')
parser.add_argument('--beta', type=float, default=0.1, help='beta used in DoubleExponentialSmoothing')
# multi-step ahead strategy used in LR and TsfKNN,多步直接预测or单步迭代预测
parser.add_argument('--msas', type=str, default='MIMO', help=' options: [MIMO, recursive]')
# TsfKNN define
parser.add_argument('--n_neighbors', type=int, default=9, help='number of neighbors used in TsfKNN')
parser.add_argument('--distance_dim', type=str, default='OT',
help='distance_dim used in TsfKNN, options: [OT, multi]')
# parser.add_argument('--distance_dim', type=str, default='multi', help='distance_dim used in TsfKNN, options: [OT, multi]')
parser.add_argument('--distance', type=str, default='manhattan', help="distance used in TsfKNN,"
"options=['euclidean', 'manhattan', 'chebyshev', 'mahalanobis', 'weighted_euclidean']")
# parser.add_argument('--weighted', type=list, default=[1,1,1,1,1,1,1], help='weighted used in weighted_euclidean')
parser.add_argument('--weighted', type=list, default=[0, 0, 2, 0, 1, 0, 4],
help='weighted used in weighted_euclidean')
# trend predict method used in TsfKNN
'''
plain: 只用96个点训练线性模型,预测接下来的32个点
AR: 用全部trend训练AR模型,再用96个点预测接下来的32个点
t_s: 将趋势和季节分量用两个KNN匹配,再相加预测
AR_AR: 将趋势和季节分量用两个AR模型预测,再相加预测
'''
parser.add_argument('--trend', type=str, default='AR_AR', help='options: [plain, AR, t_s,AR_AR]')
# transform define
parser.add_argument('--transform', type=str, default='IdentityTransform',help=""
"options=['IdentityTransform', 'Normalization', 'Standardization', 'MeanNormalization', 'BoxCox']")
# freq denoise define
parser.add_argument('--freq_denoise', type=str, default='None',
help='freq_denoise method,options: [None, fft, wavelet]')
# parser.add_argument('--freq_denoise', type=str, default='fft', help='freq_denoise method,options: [None, fft, wavelet]')
# parser.add_argument('--freq_denoise', type=str, default='wavelet', help='freq_denoise method,options: [None, fft, wavelet]')
# parser.add_argument('--channels_to_denoise', type=list, default=[0, 1, 2, 3, 4, 5, 6], help='channels_to_denoise used in fft')
parser.add_argument('--channels_to_denoise', type=list, default=[6], help='channels_to_denoise used in fft')
parser.add_argument('--cutoff_frequency', type=float, default=12, help='cutoff_frequency used in fft')
# parser.add_argument('--cutoff_frequency', type=float, default=0, help='cutoff_frequency used in fft')
parser.add_argument('--wavelet', type=str, default='db1', help='wavelet used in wavelet')
# spirit
parser.add_argument('--use_spirit', action='store_true', help='Whether to use SPIRIT algorithm')
parser.add_argument('--rank', type=int, default=7, help='Target dimensionality for SPIRIT algorithm')
parser.add_argument('--spirit_alpha', type=float, default=0.98, help='Forgetting factor for SPIRIT')
parser.add_argument('--hw5_run_SOTA', action='store_true')
parser.add_argument('--hw5_run_weather', action='store_true')
# Dlinear define
parser.add_argument('--channels', type=int, default=7, help='encoder input size')
parser.add_argument('--batch_size', type=int, default=64, help='Batch size for training')
parser.add_argument('--individual', action='store_true', help='individual training for each channel')
parser.add_argument('--D_N', action='store_true', help='Use DLinear and NLinear together')
parser.add_argument('--use_date', type=str, default=None,help='日期的编码方式,options: [None, one_hot, sin_cos]')
parser.add_argument('--use_feature', type=str, default='week', help='使用的特征,options: [week, month_week]')
parser.add_argument('--all_channel_loss', action='store_true', help='use all channel to compute loss')
parser.add_argument('--use_weather', action='store_true', help='use weather feature')
# gpu define
parser.add_argument('--device', type=str, default='0', help='gpu id or cpu')
# decompose method
parser.add_argument('--decompose_all', type=bool, default=True, help='decompose all series,使用完整序列的分解')
parser.add_argument('--residual', type=bool, default=True, help='分解后是否将残差分量保留,不保留即加到季节性中')
parser.add_argument('--decompose', type=str, default='STL')
parser.add_argument('--embed', type=str, default='timeF',
help='time features encoding, options:[timeF, fixed, learned]')
parser.add_argument('--freq', type=str, default='h',
help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, \
b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')
parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers')
parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')
parser.add_argument('--enc_in', type=int, default=7, help='encoder input size')
parser.add_argument('--dec_in', type=int, default=7, help='decoder input size')
parser.add_argument('--c_out', type=int, default=7, help='output size')
parser.add_argument('--d_model', type=int, default=512, help='hidden size')
parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn')
parser.add_argument('--n_heads', type=int, default=8, help='number of heads')
parser.add_argument('--dropout', type=float, default=0.0, help='dropout rate')
parser.add_argument('--activation', type=str, default='gelu', help='activation function')
parser.add_argument('--factor', type=int, default=1, help='attn factor')
parser.add_argument('--output_attention', type=bool, default=False, help='output attention')
parser.add_argument('--stride', type=int, default=8, help='stride')
parser.add_argument('--patch_len', type=int, default=16, help='patch_len')
parser.add_argument('--lr', type=float, default=0.0001, help='learning rate')
parser.add_argument('--epochs', type=int, default=20, help='epochs')
parser.add_argument('--patience', type=int, default=3, help='early stopping patience')
parser.add_argument('--lradj', type=str, default='type1', help='adjust learning rate'
, choices=['type1', 'type2', 'constant'])
parser.add_argument('--load_trained_model', action='store_true')
args = parser.parse_args()
return args
def get_model(args,key=None):
model_dict = {
'ZeroForecast': ZeroForecast,
'MeanForecast': MeanForecast,
'LastValueForecast': LastValueForecast,
'Autoregression': Autoregression,
'ExponentialMovingAverage': ExponentialMovingAverage,
'DoubleExponentialSmoothing': DoubleExponentialSmoothing,
'TsfKNN': TsfKNN,
'Linear_NN':Linear_NN,
'NLinear' : NLinear,
'DLinear': DLinear,
'ARIMA': ARIMAForecast,
'ThetaMethod':ThetaMethodForecast,
'ResidualModel':ResidualModel,
'Transformer': Transformer,
'PatchTST': PatchTST,
}
if key is not None:
return model_dict[key](args)
return model_dict[args.model](args)
def set_args_for_dataset(args):
if args.data_path=="./dataset/ETT/ETTh1.csv" or args.data_path=="./dataset/ETT/ETTh2.csv":
args.seq_len = 96
args.pred_len = 96
args.period = 24
args.frequency='h'
elif args.data_path=="./dataset/ETT/ETTm1.csv" or args.data_path=="./dataset/ETT/ETTm2.csv":
args.seq_len = 96
args.pred_len = 96
args.period = 96
args.frequency = 'm'
if args.use_weather:#args.data_path == "./dataset/ETT/ETTh1.csv" and
args.data_path = "./dataset/ETT/ETTh1_weather.csv"
return args
def run_hw5(args,fix_seed):
random.seed(fix_seed)
np.random.seed(fix_seed)
# 固定随机种子
torch.manual_seed(fix_seed)
torch.cuda.manual_seed(fix_seed)
torch.cuda.manual_seed_all(fix_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if args.target == 'OT':
args.channels = 1
else:
args.channels = 7
trend_model = get_model(args, args.trend_model)
seasonal_model = get_model(args, args.seasonal_model)
model = get_model(args)
train_dataset = Dataset_ETT_hour(args, flag='train')
test_dataset = Dataset_ETT_hour(args, flag='test')
if not args.decompose_based: # 使用单一模型
# train model
trainer = MLTrainer(args, model=model, dataset=train_dataset)
trainer.train()
# data_visualize(dataset.data, 5000)
# plt.show()
flag = args.model
fore, test_Y = trainer.evaluate(test_dataset)
else:
flag = args.trend_model + args.seasonal_model# 使用两个模型分别预测
trainer_trend = MLTrainer(args, model=trend_model, dataset=train_dataset)
trainer_trend.train(flag='trend')
trainer_seasonal = MLTrainer(args, model=seasonal_model, dataset=train_dataset)
trainer_seasonal.train(flag='seasonal')
fore_trend, test_Y_trend = trainer_trend.evaluate(test_dataset, flag='trend')
fore_seasonal, test_Y_seasonal = trainer_seasonal.evaluate(test_dataset, flag='seasonal')
fore = fore_trend.reshape(-1, args.pred_len, args.channels) + fore_seasonal.reshape(-1, args.pred_len,args.channels)
test_Y = test_Y_trend.reshape(-1, args.pred_len, args.channels) #+ test_Y_seasonal.reshape(-1, args.pred_len,args.channels)
evaluate_metrics(fore, test_Y, args)#,flag="多变量评估"
# plot_forecast(fore, test_Y, 500) # 看所有预测结果上的第一个数据点预测的效果
# plot_day_forecast(fore, test_Y,flag=flag) # 看某日24h的预测结果,每个子图是pred_len个数据点
plot_random_forecast(fore, test_Y,flag=flag) # 看随机预测结果上的pred_len个数据点预测的效果
plt.show()
# evaluate_metrics(fore[:, :, -1], test_Y[:, :, -1], args,flag="OT变量评估")
if __name__ == '__main__':
fix_seed = 2023
args = get_args()
# args.model = 'ResidualModel'
# args.model = 'DLinear'
# args.model = 'NLinear'
# args.model = 'Autoregression'
# args.model = 'ThetaMethod'
# args.model = 'ARIMA'
# args.model = 'TsfKNN'
args.model = 'Transformer'
# args.model = 'PatchTST'
args.decompose_based = True
args.trend_model = 'Autoregression'
args.seasonal_model = 'Autoregression'
# args.trend_model = 'NLinear'
# args.seasonal_model = 'NLinear'
# args.trend_model ='Transformer'
# args.seasonal_model ='Transformer'
# args.trend_model = 'PatchTST'
# args.seasonal_model = 'PatchTST'
args.individual = True
args.target = 'Multi'
args.D_N=True
args.lradj= 'type2'
args.load_trained_model = True
# for args.lradj in ['type1','type2','constant']:
# print()
# run_hw5(args, fix_seed)
for args.trend_model,args.seasonal_model in [
('Autoregression','Autoregression'),
('Autoregression', 'NLinear'),
('Autoregression', 'PatchTST'),
('NLinear','Autoregression'),
('NLinear', 'NLinear'),
('NLinear','PatchTST'),
('PatchTST', 'Autoregression'),
('PatchTST','NLinear'),
('PatchTST', 'PatchTST'),
]:
print()
print('trend_model =', args.trend_model, 'seasonal_model =', args.seasonal_model)#, end=': '
for args.pred_len in [96, 192, 336, 720]: # 96
run_hw5(args, fix_seed)
# run_hw5(args, fix_seed)
# if args.hw5_run_SOTA:
# # args.data_path='./dataset/ETT/ETTm1.csv'
# # args.data_path = './dataset/ETT/ETTh1.csv'
# # merge_weather()
# # args.use_weather = True
# for args.use_weather in [False]:#,True,
# # print('use_weather =',args.use_weather,end=': ')
# for args.data_path in [
# './dataset/ETT/ETTh1.csv',
# './dataset/ETT/ETTh2.csv',
# './dataset/ETT/ETTm1.csv',
# './dataset/ETT/ETTm2.csv'
# ]:
# args = set_args_for_dataset(args)
# print()
# print('data_path =', args.data_path)
# args.D_N=True
# args.use_feature = 'month_week'
# args.model = 'DLinear'
# # args.model = 'NLinear'
# # args.individual=False
# args.individual=True
# for args.use_date,args.use_feature in [
# (None, None),
# ('sin_cos','month_week'),
# # ('one_hot','month_week'),
# ('sin_cos','week'),
# # ('one_hot','week'),
# ]:
# print('use_feature =',args.use_feature,"use_date =",args.use_date,end=': ')#
# # for args.all_channel_loss in [True,False]:#
# # print('all_channel_loss =',args.all_channel_loss,end=': ')
# for args.pred_len in [96, 192, 336, 720]: # 96
# run_hw5(args, fix_seed)
# elif args.hw5_run_weather:
# args.use_weather= True
# merge_weather()
# args = set_args_for_dataset(args)
# args.D_N = True
# for args.use_date, args.use_feature in [
# (None, None),
# ('sin_cos', 'month_week'),
# # ('one_hot','month_week'),
# ('sin_cos', 'week'),
# ]:
# print('use_feature =', args.use_feature, "use_date =", args.use_date, end=': ') #
# for args.pred_len in [96, 192, 336, 720]: # 96
# run_hw5(args, fix_seed)