@@ -27,10 +27,10 @@ def weight_initialization(self):
27
27
self [name ].b .data = self .bias_initialization (link , constant = 0 )
28
28
29
29
def __call__ (self , x , train = False ):
30
- a = self .conv1x1 (x )
31
- b = self .conv3x3 (self .reduce3x3 (x ))
32
- c = self .conv5x5 (self .reduce5x5 (x ))
33
- d = self .pool_proj (F .max_pooling_2d (x , ksize = (3 , 3 ), stride = (1 , 1 ), pad = (1 , 1 )))
30
+ a = F . relu ( self .conv1x1 (x ) )
31
+ b = F . relu ( self .conv3x3 (F . relu ( self .reduce3x3 (x )) ))
32
+ c = F . relu ( self .conv5x5 (F . relu ( self .reduce5x5 (x )) ))
33
+ d = F . relu ( self .pool_proj (F .max_pooling_2d (x , ksize = (3 , 3 ), stride = (1 , 1 ), pad = (1 , 1 ) )))
34
34
return F .concat ((a , b , c , d ), axis = 1 )
35
35
36
36
@staticmethod
@@ -104,10 +104,10 @@ def weight_initialization(self):
104
104
self .linear .b .data = self .bias_initialization (self .linear , constant = 0 )
105
105
106
106
def __call__ (self , x , train = True ):
107
- h = self .conv1 (x )
107
+ h = F . relu ( self .conv1 (x ) )
108
108
h = F .max_pooling_2d (h , ksize = (3 , 3 ), stride = (2 , 2 ), pad = (1 , 1 ))
109
- h = self .conv2_1x1 (h )
110
- h = self .conv2_3x3 (h )
109
+ h = F . relu ( self .conv2_1x1 (h ) )
110
+ h = F . relu ( self .conv2_3x3 (h ) )
111
111
h = F .max_pooling_2d (h , ksize = (3 , 3 ), stride = (2 , 2 ), pad = (1 , 1 ))
112
112
h = self .inception3a (h )
113
113
h = self .inception3b (h )
@@ -119,7 +119,7 @@ def __call__(self, x, train=True):
119
119
h = self .inception4e (h )
120
120
h = F .max_pooling_2d (h , ksize = (3 , 3 ), stride = (2 , 2 ), pad = (1 , 1 ))
121
121
h = self .inception5a (h )
122
- h = self .inception5b (h )
122
+ h = F . relu ( self .inception5b (h ) )
123
123
num , categories , y , x = h .data .shape
124
124
# global average pooling
125
125
h = F .reshape (F .average_pooling_2d (h , (y , x )), (num , categories ))
0 commit comments