|
| 1 | +import chainer |
| 2 | +from chainer import optimizers |
| 3 | +import nutszebra_basic_print |
| 4 | + |
| 5 | + |
| 6 | +class Optimizer(object): |
| 7 | + |
| 8 | + def __init__(self, model=None): |
| 9 | + self.model = model |
| 10 | + self.optimizer = None |
| 11 | + |
| 12 | + def __call__(self, i): |
| 13 | + pass |
| 14 | + |
| 15 | + def update(self): |
| 16 | + self.optimizer.update() |
| 17 | + |
| 18 | + |
| 19 | +class OptimizerResnet(Optimizer): |
| 20 | + |
| 21 | + def __init__(self, model=None, schedule=(int(32000. / (50000. / 128)), int(48000. / (50000. / 128))), lr=0.1, momentum=0.9, weight_decay=1.0e-4, warm_up_lr=0.01): |
| 22 | + super(OptimizerResnet, self).__init__(model) |
| 23 | + optimizer = optimizers.MomentumSGD(warm_up_lr, momentum) |
| 24 | + weight_decay = chainer.optimizer.WeightDecay(weight_decay) |
| 25 | + optimizer.setup(self.model) |
| 26 | + optimizer.add_hook(weight_decay) |
| 27 | + self.optimizer = optimizer |
| 28 | + self.schedule = schedule |
| 29 | + self.lr = lr |
| 30 | + self.warmup_lr = warm_up_lr |
| 31 | + self.momentum = momentum |
| 32 | + self.weight_decay = weight_decay |
| 33 | + |
| 34 | + def __call__(self, i): |
| 35 | + if i == 1: |
| 36 | + lr = self.lr |
| 37 | + print('finishded warming up') |
| 38 | + print('lr is changed: {} -> {}'.format(self.optimizer.lr, lr)) |
| 39 | + self.optimizer.lr = lr |
| 40 | + if i in self.schedule: |
| 41 | + lr = self.optimizer.lr / 10 |
| 42 | + print('lr is changed: {} -> {}'.format(self.optimizer.lr, lr)) |
| 43 | + self.optimizer.lr = lr |
| 44 | + |
| 45 | + |
| 46 | +class OptimizerDense(Optimizer): |
| 47 | + |
| 48 | + def __init__(self, model=None, schedule=(150, 225), lr=0.1, momentum=0.9, weight_decay=1.0e-4): |
| 49 | + super(OptimizerDense, self).__init__(model) |
| 50 | + optimizer = optimizers.MomentumSGD(lr, momentum) |
| 51 | + weight_decay = chainer.optimizer.WeightDecay(weight_decay) |
| 52 | + optimizer.setup(self.model) |
| 53 | + optimizer.add_hook(weight_decay) |
| 54 | + self.optimizer = optimizer |
| 55 | + self.schedule = schedule |
| 56 | + self.lr = lr |
| 57 | + self.momentum = momentum |
| 58 | + self.weight_decay = weight_decay |
| 59 | + |
| 60 | + def __call__(self, i): |
| 61 | + if i in self.schedule: |
| 62 | + lr = self.optimizer.lr / 10 |
| 63 | + print('lr is changed: {} -> {}'.format(self.optimizer.lr, lr)) |
| 64 | + self.optimizer.lr = lr |
| 65 | + |
| 66 | + |
| 67 | +class OptimizerWideRes(Optimizer): |
| 68 | + |
| 69 | + def __init__(self, model=None, schedule=(60, 120, 160), lr=0.1, momentum=0.9, weight_decay=5.0e-4): |
| 70 | + super(OptimizerWideRes, self).__init__(model) |
| 71 | + optimizer = optimizers.MomentumSGD(lr, momentum) |
| 72 | + weight_decay = chainer.optimizer.WeightDecay(weight_decay) |
| 73 | + optimizer.setup(self.model) |
| 74 | + optimizer.add_hook(weight_decay) |
| 75 | + self.optimizer = optimizer |
| 76 | + self.schedule = schedule |
| 77 | + self.lr = lr |
| 78 | + self.momentum = momentum |
| 79 | + self.weight_decay = weight_decay |
| 80 | + |
| 81 | + def __call__(self, i): |
| 82 | + if i in self.schedule: |
| 83 | + lr = self.optimizer.lr * 0.2 |
| 84 | + print('lr is changed: {} -> {}'.format(self.optimizer.lr, lr)) |
| 85 | + self.optimizer.lr = lr |
| 86 | + |
| 87 | + |
| 88 | +class OptimizerSwapout(Optimizer): |
| 89 | + |
| 90 | + def __init__(self, model=None, schedule=(196, 224), lr=0.1, momentum=0.9, weight_decay=1.0e-4): |
| 91 | + super(OptimizerSwapout, self).__init__(model) |
| 92 | + optimizer = optimizers.MomentumSGD(lr, momentum) |
| 93 | + weight_decay = chainer.optimizer.WeightDecay(weight_decay) |
| 94 | + optimizer.setup(self.model) |
| 95 | + optimizer.add_hook(weight_decay) |
| 96 | + self.optimizer = optimizer |
| 97 | + self.schedule = schedule |
| 98 | + self.lr = lr |
| 99 | + self.momentum = momentum |
| 100 | + self.weight_decay = weight_decay |
| 101 | + |
| 102 | + def __call__(self, i): |
| 103 | + if i in self.schedule: |
| 104 | + lr = self.optimizer.lr / 10 |
| 105 | + print('lr is changed: {} -> {}'.format(self.optimizer.lr, lr)) |
| 106 | + self.optimizer.lr = lr |
| 107 | + |
| 108 | + |
| 109 | +class OptimizerXception(Optimizer): |
| 110 | + |
| 111 | + def __init__(self, model=None, lr=0.045, momentum=0.9, weight_decay=1.0e-5, period=2): |
| 112 | + super(OptimizerXception, self).__init__(model) |
| 113 | + optimizer = optimizers.MomentumSGD(lr, momentum) |
| 114 | + weight_decay = chainer.optimizer.WeightDecay(weight_decay) |
| 115 | + optimizer.setup(self.model) |
| 116 | + optimizer.add_hook(weight_decay) |
| 117 | + self.optimizer = optimizer |
| 118 | + self.lr = lr |
| 119 | + self.momentum = momentum |
| 120 | + self.weight_decay = weight_decay |
| 121 | + self.period = int(period) |
| 122 | + |
| 123 | + def __call__(self, i): |
| 124 | + if i % self.period == 0: |
| 125 | + lr = self.optimizer.lr * 0.94 |
| 126 | + print('lr is changed: {} -> {}'.format(self.optimizer.lr, lr)) |
| 127 | + self.optimizer.lr = lr |
| 128 | + |
| 129 | + |
| 130 | +class OptimizerVGG(Optimizer): |
| 131 | + |
| 132 | + def __init__(self, model=None, lr=0.01, momentum=0.9, weight_decay=5.0e-4): |
| 133 | + super(OptimizerVGG, self).__init__(model) |
| 134 | + optimizer = optimizers.MomentumSGD(lr, momentum) |
| 135 | + weight_decay = chainer.optimizer.WeightDecay(weight_decay) |
| 136 | + optimizer.setup(self.model) |
| 137 | + optimizer.add_hook(weight_decay) |
| 138 | + self.optimizer = optimizer |
| 139 | + self.lr = lr |
| 140 | + self.momentum = momentum |
| 141 | + self.weight_decay = weight_decay |
| 142 | + |
| 143 | + def __call__(self, i): |
| 144 | + # 150 epoch means (0.94 ** 75) * lr |
| 145 | + # if lr is 0.01, then (0.94 ** 75) * 0.01 is 0.0001 at the end |
| 146 | + if i % 2 == 0: |
| 147 | + lr = self.optimizer.lr * 0.94 |
| 148 | + print('lr is changed: {} -> {}'.format(self.optimizer.lr, lr)) |
| 149 | + self.optimizer.lr = lr |
| 150 | + |
| 151 | + |
| 152 | +class OptimizerGooglenet(Optimizer): |
| 153 | + |
| 154 | + def __init__(self, model=None, lr=0.0015, momentum=0.9, weight_decay=2.0e-4): |
| 155 | + super(OptimizerGooglenet, self).__init__(model) |
| 156 | + optimizer = optimizers.MomentumSGD(lr, momentum) |
| 157 | + weight_decay = chainer.optimizer.WeightDecay(weight_decay) |
| 158 | + optimizer.setup(self.model) |
| 159 | + optimizer.add_hook(weight_decay) |
| 160 | + self.optimizer = optimizer |
| 161 | + self.lr = lr |
| 162 | + self.momentum = momentum |
| 163 | + self.weight_decay = weight_decay |
| 164 | + |
| 165 | + def __call__(self, i): |
| 166 | + if i % 8 == 0: |
| 167 | + lr = self.optimizer.lr * 0.96 |
| 168 | + print('lr is changed: {} -> {}'.format(self.optimizer.lr, lr)) |
| 169 | + self.optimizer.lr = lr |
| 170 | + |
| 171 | + |
| 172 | +class OptimizerNetworkInNetwork(Optimizer): |
| 173 | + |
| 174 | + def __init__(self, model=None, lr=0.1, momentum=0.9, weight_decay=1.0e-4, schedule=(int(1.0e5 / (50000. / 128)), )): |
| 175 | + super(OptimizerNetworkInNetwork, self).__init__(model) |
| 176 | + optimizer = optimizers.MomentumSGD(lr, momentum) |
| 177 | + weight_decay = chainer.optimizer.WeightDecay(weight_decay) |
| 178 | + optimizer.setup(self.model) |
| 179 | + optimizer.add_hook(weight_decay) |
| 180 | + self.optimizer = optimizer |
| 181 | + self.lr = lr |
| 182 | + self.momentum = momentum |
| 183 | + self.weight_decay = weight_decay |
| 184 | + self.schedule = schedule |
| 185 | + |
| 186 | + def __call__(self, i): |
| 187 | + if i in self.schedule: |
| 188 | + lr = self.optimizer.lr / 10 |
| 189 | + print('lr is changed: {} -> {}'.format(self.optimizer.lr, lr)) |
| 190 | + self.optimizer.lr = lr |
0 commit comments