|
6 | 6 | "metadata": {},
|
7 | 7 | "outputs": [],
|
8 | 8 | "source": [
|
9 |
| - "from nums import numpy as nps\n", |
10 |
| - "from nums.models.glms import LogisticRegression" |
| 9 | + "import nums\n", |
| 10 | + "import nums.numpy as nps\n", |
| 11 | + "from nums.models.glms import LogisticRegression\n", |
| 12 | + "\n", |
| 13 | + "nums.init()" |
11 | 14 | ]
|
12 | 15 | },
|
13 | 16 | {
|
|
17 | 20 | "outputs": [],
|
18 | 21 | "source": [
|
19 | 22 | "# Make dataset.\n",
|
| 23 | + "\n", |
20 | 24 | "X1 = nps.random.randn(500, 1) + 5.0\n",
|
21 | 25 | "y1 = nps.zeros(shape=(500,), dtype=bool)\n",
|
| 26 | + "\n", |
22 | 27 | "X2 = nps.random.randn(500, 1) + 10.0\n",
|
23 | 28 | "y2 = nps.ones(shape=(500,), dtype=bool)\n",
|
| 29 | + "\n", |
24 | 30 | "X = nps.concatenate([X1, X2], axis=0)\n",
|
25 | 31 | "y = nps.concatenate([y1, y2], axis=0)"
|
26 | 32 | ]
|
|
32 | 38 | "outputs": [],
|
33 | 39 | "source": [
|
34 | 40 | "# Train Logistic Regression Model.\n",
|
35 |
| - "model = LogisticRegression(solver=\"newton-cg\", tol=1e-8, max_iter=1)\n", |
| 41 | + "\n", |
| 42 | + "model = LogisticRegression(solver=\"newton\", tol=1e-8, max_iter=1)\n", |
| 43 | + "\n", |
36 | 44 | "model.fit(X, y)\n",
|
37 | 45 | "y_pred = model.predict(X)\n",
|
| 46 | + "\n", |
38 | 47 | "print(\"accuracy\", (nps.sum(y == y_pred) / X.shape[0]).get())"
|
39 | 48 | ]
|
40 | 49 | }
|
41 | 50 | ],
|
42 | 51 | "metadata": {
|
43 | 52 | "kernelspec": {
|
44 |
| - "display_name": "Python 3", |
| 53 | + "display_name": "Python 3 (ipykernel)", |
45 | 54 | "language": "python",
|
46 | 55 | "name": "python3"
|
47 | 56 | },
|
|
55 | 64 | "name": "python",
|
56 | 65 | "nbconvert_exporter": "python",
|
57 | 66 | "pygments_lexer": "ipython3",
|
58 |
| - "version": "3.7.4" |
| 67 | + "version": "3.7.10" |
59 | 68 | }
|
60 | 69 | },
|
61 | 70 | "nbformat": 4,
|
|
0 commit comments