layout | permalink | nav_order | title | dataDir |
---|---|---|---|---|
default |
/bbob-largescale/ |
5 |
bbob-largescale |
<script type="text/javascript" src="{{site.baseurl}}/sort-table.js"></script>
In the table below, you will find all official algorithm data sets on the bbob-largescale test suite, together with their year of publication, the authors, and related PDFs for each data set. Links to the source code to run the corresponding experiments/algorithms are provided whenever available.
To sort the table, simply click on the table header of the corresponding column.
{:.js-sort-table}
Number | Algorithm Name | Year | Author(s) | link to data | related PDFs, source code, and remarks |
---|---|---|---|---|---|
largescale-000 | CMA | 2019 | Varelas | [data]({{ page.dataDir }}/2019/CMA_Varelas_largescale.tgz) | GECCO 2019 paper |
largescale-001 | LBFGS | 2019 | Varelas | [data]({{ page.dataDir }}/2019/LBFGS_Varelas_largescale.tgz) | GECCO 2019 paper |
largescale-002 | LMCMA14 | 2019 | Varelas | [data]({{ page.dataDir }}/2019/LMCMA14_Varelas_largescale.tgz) | GECCO 2019 paper |
largescale-003 | LMCMA17 | 2019 | Varelas | [data]({{ page.dataDir }}/2019/LMCMA17_Varelas_largescale.tgz) | GECCO 2019 paper |
largescale-004 | R2ES | 2019 | Varelas | [data]({{ page.dataDir }}/2019/R2ES_Varelas_largescale.tgz) | GECCO 2019 paper |
largescale-005 | R10ES | 2019 | Varelas | [data]({{ page.dataDir }}/2019/R10ES_Varelas_largescale.tgz) | GECCO 2019 paper |
largescale-006 | V2D-CMA | 2019 | Varelas | [data]({{ page.dataDir }}/2019/V2D-CMA_Varelas_largescale.tgz) | GECCO 2019 paper |
largescale-007 | VD-CMA | 2019 | Varelas | [data]({{ page.dataDir }}/2019/VD-CMA_Varelas_largescale.tgz) | GECCO 2019 paper |
largescale-008 | VkD-CMA | 2019 | Varelas | [data]({{ page.dataDir }}/2019/VkD-CMA_Varelas_largescale.tgz) | GECCO 2019 paper |
largescale-009 | m2DLBFGS | 2019 | Varelas | [data]({{ page.dataDir }}/2019/m2DLBFGS_Varelas_largescale.tgz) | GECCO 2019 paper |
largescale-010 | sepCMA | 2019 | Varelas | [data]({{ page.dataDir }}/2019/sepCMA_Varelas_largescale.tgz) | GECCO 2019 paper |
largescale-011 | BSrr | 2022 | Tanabe | [data]({{ page.dataDir }}/2022/BSrr_Tanabe.tgz) | Brent-STEP applied to single variables in a round-robin fashion: BBOB-2022 paper |
largescale-012 | HJ-5 | 2022 | Tanabe | [data]({{ page.dataDir }}/2022/HJ-5_Tanabe.tgz) | Hooke-Jeeves with parameter c set to 0.5: BBOB-2022 paper |
largescale-013 | HJ-9 | 2022 | Tanabe | [data]({{ page.dataDir }}/2022/HJ-9_Tanabe.tgz) | Hooke-Jeeves with parameter c set to 0.9: BBOB-2022 paper |
largescale-014 | MTSLS1-5 | 2022 | Tanabe | [data]({{ page.dataDir }}/2022/MTSLS1-5_Tanabe.tgz) | Multiple Trajectory Search with local search LS1 and parameter c set to 0.5: BBOB-2022 paper |
largescale-015 | MTSLS1-9 | 2022 | Tanabe | [data]({{ page.dataDir }}/2022/MTSLS1-9_Tanabe.tgz) | Multiple Trajectory Search with local search LS1 and parameter c set to 0.9: BBOB-2022 paper |
largescale-016 | RANDOMSEARCH | 2024 | Brockhoff | [data]({{ page.dataDir }}/2024/RANDOMSEARCH_Brockhoff.zip) | continuous submission: uniform sampling in |