Skip to content

Latest commit

 

History

History
46 lines (36 loc) · 6.04 KB

bbob-largescale.md

File metadata and controls

46 lines (36 loc) · 6.04 KB
layout permalink nav_order title dataDir
default
/bbob-largescale/
5
bbob-largescale

Algorithm data sets for the bbob-largescale test suite


<script type="text/javascript" src="{{site.baseurl}}/sort-table.js"></script>

In the table below, you will find all official algorithm data sets on the bbob-largescale test suite, together with their year of publication, the authors, and related PDFs for each data set. Links to the source code to run the corresponding experiments/algorithms are provided whenever available.

To sort the table, simply click on the table header of the corresponding column.

{:.js-sort-table}

Number Algorithm Name Year Author(s) link to data related PDFs, source code, and remarks
largescale-000 CMA 2019 Varelas [data]({{ page.dataDir }}/2019/CMA_Varelas_largescale.tgz) GECCO 2019 paper
largescale-001 LBFGS 2019 Varelas [data]({{ page.dataDir }}/2019/LBFGS_Varelas_largescale.tgz) GECCO 2019 paper
largescale-002 LMCMA14 2019 Varelas [data]({{ page.dataDir }}/2019/LMCMA14_Varelas_largescale.tgz) GECCO 2019 paper
largescale-003 LMCMA17 2019 Varelas [data]({{ page.dataDir }}/2019/LMCMA17_Varelas_largescale.tgz) GECCO 2019 paper
largescale-004 R2ES 2019 Varelas [data]({{ page.dataDir }}/2019/R2ES_Varelas_largescale.tgz) GECCO 2019 paper
largescale-005 R10ES 2019 Varelas [data]({{ page.dataDir }}/2019/R10ES_Varelas_largescale.tgz) GECCO 2019 paper
largescale-006 V2D-CMA 2019 Varelas [data]({{ page.dataDir }}/2019/V2D-CMA_Varelas_largescale.tgz) GECCO 2019 paper
largescale-007 VD-CMA 2019 Varelas [data]({{ page.dataDir }}/2019/VD-CMA_Varelas_largescale.tgz) GECCO 2019 paper
largescale-008 VkD-CMA 2019 Varelas [data]({{ page.dataDir }}/2019/VkD-CMA_Varelas_largescale.tgz) GECCO 2019 paper
largescale-009 m2DLBFGS 2019 Varelas [data]({{ page.dataDir }}/2019/m2DLBFGS_Varelas_largescale.tgz) GECCO 2019 paper
largescale-010 sepCMA 2019 Varelas [data]({{ page.dataDir }}/2019/sepCMA_Varelas_largescale.tgz) GECCO 2019 paper
largescale-011 BSrr 2022 Tanabe [data]({{ page.dataDir }}/2022/BSrr_Tanabe.tgz) Brent-STEP applied to single variables in a round-robin fashion: BBOB-2022 paper
largescale-012 HJ-5 2022 Tanabe [data]({{ page.dataDir }}/2022/HJ-5_Tanabe.tgz) Hooke-Jeeves with parameter c set to 0.5: BBOB-2022 paper
largescale-013 HJ-9 2022 Tanabe [data]({{ page.dataDir }}/2022/HJ-9_Tanabe.tgz) Hooke-Jeeves with parameter c set to 0.9: BBOB-2022 paper
largescale-014 MTSLS1-5 2022 Tanabe [data]({{ page.dataDir }}/2022/MTSLS1-5_Tanabe.tgz) Multiple Trajectory Search with local search LS1 and parameter c set to 0.5: BBOB-2022 paper
largescale-015 MTSLS1-9 2022 Tanabe [data]({{ page.dataDir }}/2022/MTSLS1-9_Tanabe.tgz) Multiple Trajectory Search with local search LS1 and parameter c set to 0.9: BBOB-2022 paper
largescale-016 RANDOMSEARCH 2024 Brockhoff [data]({{ page.dataDir }}/2024/RANDOMSEARCH_Brockhoff.zip) continuous submission: uniform sampling in $[-5,5]^n$