-
Notifications
You must be signed in to change notification settings - Fork 90
/
Copy pathcoco_observer.c
853 lines (728 loc) · 34.5 KB
/
coco_observer.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
/**
* @file coco_observer.c
* @brief Definitions of functions regarding COCO observers.
*/
#include "coco.h"
#include "coco_internal.h"
#include <limits.h>
#include <float.h>
#include <math.h>
/**
* @brief The type for triggers based on logarithmic target values (targets that are uniformly distributed
* in the logarithmic space).
*
* The target values that trigger logging are at every 10**(exponent/number_of_triggers) from positive
* infinity down to precision, at 0, and from -precision on with step -10**(exponent/number_of_triggers) until
* negative infinity.
*/
typedef struct {
int exponent; /**< @brief Value used to compare with the previously hit target. */
double value; /**< @brief Value of the currently hit target. */
size_t number_of_triggers; /**< @brief Number of target triggers between 10**i and 10**(i+1) for any i. */
double precision; /**< @brief Minimal precision of interest. */
} coco_observer_log_targets_t;
/**
* @brief The type for triggers based on linear target values (targets that are uniformly distributed
* in the linear space).
*
* The target values that trigger logging are at every precision * integer value.
*/
typedef struct {
double value; /**< @brief Value of the currently hit target. */
double precision; /**< @brief Precision of interest. */
} coco_observer_lin_targets_t;
/**
* @brief The type for triggers based on either logarithmic or linear target values.
*
* The linear targets are always used, while the logarithmic ones are used only on problems with known optima.
*/
typedef struct {
int use_log_targets;
coco_observer_lin_targets_t *lin_targets;
coco_observer_log_targets_t *log_targets;
} coco_observer_targets_t;
/**
* @brief The type for triggers based on numbers of evaluations.
*
* The numbers of evaluations that trigger logging are any of the two:
* - every 10**(exponent1/number_of_triggers) for exponent1 >= 0
* - every base_evaluation * dimension * (10**exponent2) for exponent2 >= 0
*/
typedef struct {
/* First trigger */
size_t value1; /**< @brief The next value for the first trigger. */
size_t exponent1; /**< @brief Exponent used to compute the first trigger. */
size_t number_of_triggers; /**< @brief Number of target triggers between 10**i and 10**(i+1) for any i. */
/* Second trigger */
size_t value2; /**< @brief The next value for the second trigger. */
size_t exponent2; /**< @brief Exponent used to compute the second trigger. */
size_t *base_evaluations; /**< @brief The base evaluation numbers used to compute the actual evaluation
numbers that trigger logging. */
size_t base_count; /**< @brief The number of base evaluations. */
size_t base_index; /**< @brief The next index of the base evaluations. */
size_t dimension; /**< @brief Dimension used in the calculation of the first trigger. */
} coco_observer_evaluations_t;
/**
* @brief The maximum number of evaluations to trigger logging.
*
* @note This is not the maximal evaluation number to be logged, but the maximal number of times logging is
* triggered by the number of evaluations.
*/
#define COCO_MAX_EVALS_TO_LOG 1000
/***********************************************************************************************************/
/**
* @name Methods regarding triggers based on target values
*/
/**@{*/
/**
* @brief Creates and returns a structure containing information on logarithmic targets.
*
* @param number_of_targets The number of targets between 10**i and 10**(i+1) for each i. If 0, the
* logarithmic targets will not be used.
* @param precision Minimal precision of interest.
*/
static coco_observer_log_targets_t *coco_observer_log_targets(const size_t number_of_targets,
const double precision) {
coco_observer_log_targets_t *log_targets =
(coco_observer_log_targets_t *) coco_allocate_memory(sizeof(*log_targets));
log_targets->exponent = INT_MAX;
log_targets->value = DBL_MAX;
log_targets->number_of_triggers = number_of_targets;
log_targets->precision = precision;
return log_targets;
}
/**
* @brief Checks whether the given value should trigger logging with logarithmic targets.
* If so, the internal values are updated.
*/
static int coco_observer_log_targets_trigger(coco_observer_log_targets_t *log_targets,
const double given_value) {
int activate_trigger = 0;
double number_of_targets_double;
double verified_value = 0;
int current_exponent = 0;
int adjusted_exponent = 0;
if (log_targets == NULL) {
return 0;
}
number_of_targets_double = (double) (long) log_targets->number_of_triggers;
/* The given_value is positive or zero */
if (given_value >= 0) {
if (given_value == 0) {
/* If zero, use even smaller value than precision */
verified_value = log_targets->precision / 10.0;
} else if (given_value < log_targets->precision) {
/* If close to zero, use precision instead of the given_value */
verified_value = log_targets->precision;
} else {
verified_value = given_value;
}
current_exponent = (int) (ceil(log10(verified_value) * number_of_targets_double));
if (current_exponent < log_targets->exponent) {
/* Update the target information */
log_targets->exponent = current_exponent;
if (given_value == 0)
log_targets->value = 0;
else
log_targets->value = pow(10, (double) current_exponent / number_of_targets_double);
activate_trigger = 1;
}
}
/* The given_value is negative, therefore adjustments need to be made */
else {
/* If close to zero, use precision instead of the given_value*/
if (given_value > -log_targets->precision) {
verified_value = log_targets->precision;
} else {
verified_value = -given_value;
}
/* Adjustment: use floor instead of ceil! */
current_exponent = (int) (floor(log10(verified_value) * number_of_targets_double));
/* Compute the adjusted_exponent in such a way, that it is always diminishing in value. The adjusted
* exponent can only be used to verify if a new target has been hit. To compute the actual target
* value, the current_exponent needs to be used. */
adjusted_exponent = 2 * (int) (ceil(log10(log_targets->precision / 10.0) * number_of_targets_double))
- current_exponent - 1;
if (adjusted_exponent < log_targets->exponent) {
/* Update the target information */
log_targets->exponent = adjusted_exponent;
log_targets->value = - pow(10, (double) current_exponent / number_of_targets_double);
activate_trigger = 1;
}
}
return activate_trigger;
}
/**
* @brief Creates and returns a structure containing information on linear targets.
*
* @param precision Minimal precision of interest.
*/
static coco_observer_lin_targets_t *coco_observer_lin_targets(const double precision) {
coco_observer_lin_targets_t *lin_targets =
(coco_observer_lin_targets_t *) coco_allocate_memory(sizeof(*lin_targets));
lin_targets->value = DBL_MAX;
lin_targets->precision = precision;
return lin_targets;
}
/**
* @brief Checks whether the given value should trigger logging with linear targets.
* If so, the internal values are updated.
*/
static int coco_observer_lin_targets_trigger(coco_observer_lin_targets_t *lin_targets,
const double given_value) {
int activate_trigger = 0;
double target_reached;
assert(lin_targets != NULL);
target_reached = coco_double_round_up_with_precision(given_value, lin_targets->precision);
if (target_reached < lin_targets->value) {
activate_trigger = 1;
lin_targets->value = target_reached;
}
return activate_trigger;
}
/**
* @brief Creates and returns a structure containing information on triggers based on linear or
* logarithmic target values (or both).
*
* If number_of_targets = 0, the logarithmic targets are not used. If not, they are used only if the suite
* has a known optimum. The linear targets are always used.
*/
static coco_observer_targets_t *coco_observer_targets(const int optima_known,
const double lin_precision,
const size_t number_of_targets,
const double log_precision) {
coco_observer_targets_t *targets = (coco_observer_targets_t *) coco_allocate_memory(
sizeof(*targets));
targets->use_log_targets = (number_of_targets > 0) && optima_known;
targets->lin_targets = coco_observer_lin_targets(lin_precision);
if (targets->use_log_targets)
targets->log_targets = coco_observer_log_targets(number_of_targets, log_precision);
else
targets->log_targets = NULL;
return targets;
}
/**
* @brief Computes and returns whether the given value should trigger logging.
*/
static int coco_observer_targets_trigger(coco_observer_targets_t *targets,
const double given_value) {
int log_trigger = coco_observer_log_targets_trigger(targets->log_targets, given_value);
int lin_trigger = coco_observer_lin_targets_trigger(targets->lin_targets, given_value);
return log_trigger || lin_trigger;
}
/**
* @brief Returns the last triggered target.
*/
static double coco_observer_targets_get_last_target(coco_observer_targets_t *targets) {
double best_target, lin_target;
if (targets->use_log_targets) {
assert(targets->log_targets);
best_target = ((coco_observer_log_targets_t *) targets->log_targets)->value;
}
assert(targets->lin_targets);
lin_target = ((coco_observer_lin_targets_t *) targets->lin_targets)->value;
if (lin_target < best_target)
best_target = lin_target;
return best_target;
}
/**
* @brief Frees the given targets object.
*/
static void coco_observer_targets_free(coco_observer_targets_t *targets) {
assert(targets != NULL);
coco_free_memory(targets->lin_targets);
if (targets->use_log_targets)
coco_free_memory(targets->log_targets);
coco_free_memory(targets);
}
/**@}*/
/***********************************************************************************************************/
/**
* @name Methods regarding triggers based on numbers of evaluations.
*/
/**@{*/
/**
* @brief Creates and returns a structure containing information on triggers based on evaluation numbers.
*
* The numbers of evaluations that trigger logging are any of the two:
* - every 10**(exponent1/number_of_triggers) for exponent1 >= 0
* - every base_evaluation * dimension * (10**exponent2) for exponent2 >= 0
*
* @note The coco_observer_evaluations_t object instances need to be freed using the
* coco_observer_evaluations_free function!
*
* @param base_evaluations Evaluation numbers formatted as a string, which are used as the base to compute
* the second trigger. For example, if base_evaluations = "1,2,5", the logger will be triggered by
* evaluations dim*1, dim*2, dim*5, 10*dim*1, 10*dim*2, 10*dim*5, 100*dim*1, 100*dim*2, 100*dim*5, ...
*/
static coco_observer_evaluations_t *coco_observer_evaluations(const char *base_evaluations,
const size_t dimension) {
coco_observer_evaluations_t *evaluations = (coco_observer_evaluations_t *) coco_allocate_memory(
sizeof(*evaluations));
/* First trigger */
evaluations->value1 = 1;
evaluations->exponent1 = 0;
evaluations->number_of_triggers = 20;
/* Second trigger */
evaluations->base_evaluations = coco_string_parse_ranges(base_evaluations, 1, 0, "base_evaluations",
COCO_MAX_EVALS_TO_LOG);
evaluations->dimension = dimension;
evaluations->base_count = coco_count_numbers(evaluations->base_evaluations, COCO_MAX_EVALS_TO_LOG,
"base_evaluations");
evaluations->base_index = 0;
evaluations->value2 = dimension * evaluations->base_evaluations[0];
evaluations->exponent2 = 0;
return evaluations;
}
/**
* @brief Computes and returns whether the given evaluation number triggers the first condition of the
* logging based on the number of evaluations.
*
* The second condition is:
* evaluation_number == 10**(exponent1/number_of_triggers)
*/
static int coco_observer_evaluations_trigger_first(coco_observer_evaluations_t *evaluations,
const size_t evaluation_number) {
assert(evaluations != NULL);
if (evaluation_number >= evaluations->value1) {
/* Compute the next value for the first trigger */
while (coco_double_to_size_t(floor(pow(10, (double) evaluations->exponent1 / (double) evaluations->number_of_triggers))) <= evaluations->value1) {
evaluations->exponent1++;
}
evaluations->value1 = coco_double_to_size_t(floor(pow(10, (double) evaluations->exponent1 / (double) evaluations->number_of_triggers)));
return 1;
}
return 0;
}
/**
* @brief Computes and returns whether the given evaluation number triggers the second condition of the
* logging based on the number of evaluations.
*
* The second condition is:
* evaluation_number == base_evaluation[base_index] * dimension * (10**exponent2)
*/
static int coco_observer_evaluations_trigger_second(coco_observer_evaluations_t *evaluations,
const size_t evaluation_number) {
assert(evaluations != NULL);
if (evaluation_number >= evaluations->value2) {
/* Compute the next value for the second trigger */
if (evaluations->base_index < evaluations->base_count - 1) {
evaluations->base_index++;
} else {
evaluations->base_index = 0;
evaluations->exponent2++;
}
evaluations->value2 = coco_double_to_size_t(pow(10, (double) evaluations->exponent2)
* (double) (long) evaluations->dimension
* (double) (long) evaluations->base_evaluations[evaluations->base_index]);
return 1;
}
return 0;
}
/**
* @brief Returns 1 if any of the two triggers based on the number of evaluations equal 1 and 0 otherwise.
*
* The numbers of evaluations that trigger logging are any of the two:
* - every 10**(exponent1/number_of_triggers) for exponent1 >= 0
* - every base_evaluation * dimension * (10**exponent2) for exponent2 >= 0
*/
static int coco_observer_evaluations_trigger(coco_observer_evaluations_t *evaluations,
const size_t evaluation_number) {
/* Both functions need to be called so that both triggers are correctly updated */
int first = coco_observer_evaluations_trigger_first(evaluations, evaluation_number);
int second = coco_observer_evaluations_trigger_second(evaluations, evaluation_number);
return (first + second > 0) ? 1: 0;
}
/**
* @brief Frees the given evaluations object.
*/
static void coco_observer_evaluations_free(coco_observer_evaluations_t *evaluations) {
assert(evaluations != NULL);
coco_free_memory(evaluations->base_evaluations);
coco_free_memory(evaluations);
}
/**@}*/
/***********************************************************************************************************/
/**
* @brief Allocates memory for a coco_observer_t instance.
*/
static coco_observer_t *coco_observer_allocate(const char *result_folder,
const char *observer_name,
const char *algorithm_name,
const char *algorithm_info,
const size_t number_target_triggers,
const double log_target_precision,
const double lin_target_precision,
const size_t number_evaluation_triggers,
const char *base_evaluation_triggers,
const int precision_x,
const int precision_f,
const int precision_g,
const int log_discrete_as_int) {
coco_observer_t *observer;
observer = (coco_observer_t *) coco_allocate_memory(sizeof(*observer));
/* Initialize fields to sane/safe defaults */
observer->result_folder = coco_strdup(result_folder);
observer->observer_name = coco_strdup(observer_name);
observer->algorithm_name = coco_strdup(algorithm_name);
observer->algorithm_info = coco_strdup(algorithm_info);
observer->number_target_triggers = number_target_triggers;
observer->log_target_precision = log_target_precision;
observer->lin_target_precision = lin_target_precision;
observer->number_evaluation_triggers = number_evaluation_triggers;
observer->base_evaluation_triggers = coco_strdup(base_evaluation_triggers);
observer->precision_x = precision_x;
observer->precision_f = precision_f;
observer->precision_g = precision_g;
observer->log_discrete_as_int = log_discrete_as_int;
observer->data = NULL;
observer->data_free_function = NULL;
observer->logger_allocate_function = NULL;
observer->logger_free_function = NULL;
observer->restart_function = NULL;
observer->is_active = 1;
return observer;
}
void coco_observer_free(coco_observer_t *observer) {
if (observer != NULL) {
observer->is_active = 0;
if (observer->observer_name != NULL)
coco_free_memory(observer->observer_name);
if (observer->result_folder != NULL)
coco_free_memory(observer->result_folder);
if (observer->algorithm_name != NULL)
coco_free_memory(observer->algorithm_name);
if (observer->algorithm_info != NULL)
coco_free_memory(observer->algorithm_info);
if (observer->base_evaluation_triggers != NULL)
coco_free_memory(observer->base_evaluation_triggers);
if (observer->data != NULL) {
if (observer->data_free_function != NULL) {
observer->data_free_function(observer->data);
}
coco_free_memory(observer->data);
observer->data = NULL;
}
observer->logger_allocate_function = NULL;
observer->logger_free_function = NULL;
observer->restart_function = NULL;
coco_free_memory(observer);
observer = NULL;
}
}
#include "logger_bbob_old.c"
#include "logger_bbob.c"
#include "logger_biobj.c"
#include "logger_toy.c"
#include "logger_rw.c"
/**
* Currently, four observers are supported:
* - "bbob" is the observer for single-objective (both noisy and noiseless) problems with known optima, which
* creates *.info, *.dat, *.tdat and *.rdat files and logs the distance to the optimum.
* - "bbob-biobj" is the observer for bi-objective problems, which creates *.info, *.dat and *.tdat files for
* the given indicators, as well as an archive folder with *.adat files containing nondominated solutions.
* - "rw" is an observer for single- and bi-objective real-world problems that logs all information (can be
* configured to long only some information) and produces *.txt files (not readable by post-processing).
* - "toy" is a simple observer that logs when a target has been hit.
*
* @param observer_name A string containing the name of the observer. Currently supported observer names are
* "bbob", "bbob-biobj", "toy". Strings "no_observer", "" or NULL return NULL.
* @param observer_options A string of pairs "key: value" used to pass the options to the observer. Some
* observer options are general, while others are specific to some observers. Here we list only the general
* options, see observer_bbob, observer_biobj and observer_toy for options of the specific observers.
* - "outer_folder: NAME" determines the outer folder for the experiment. The default value is "exdata".
* - "result_folder: NAME" determines the folder within the "exdata" folder into which the results will be
* output. If the folder with the given name already exists, first NAME_001 will be tried, then NAME_002 and
* so on. The default value is "default".
* - "algorithm_name: NAME", where NAME is a short name of the algorithm that will be used in plots (no
* spaces are allowed). The default value is "ALG".
* - "algorithm_info: STRING" stores the description of the algorithm. If it contains spaces, it must be
* surrounded by double quotes. The default value is "" (no description).
* - "number_target_triggers: VALUE" defines the number of targets between each 10**i and 10**(i+1)
* (equally spaced in the logarithmic scale) that trigger logging. The default value is 10.
* - "log_target_precision: VALUE" defines the precision used for logarithmic targets (there are no targets for
* abs(values) < log_target_precision). The default value is 1e-8.
* - "lin_target_precision: VALUE" defines the precision used for linear targets. The default value is 1e-5.
* - "number_evaluation_triggers: VALUE" defines the number of evaluations to be logged between each 10**i
* and 10**(i+1). The default value is 20.
* - "base_evaluation_triggers: VALUES" defines the base evaluations used to produce an additional
* evaluation-based logging. The numbers of evaluations that trigger logging are every
* base_evaluation * dimension * (10**i). For example, if base_evaluation_triggers = "1,2,5", the logger will
* be triggered by evaluations dim*1, dim*2, dim*5, 10*dim*1, 10*dim*2, 10*dim*5, 100*dim*1, 100*dim*2,
* 100*dim*5, ... The default value is "1,2,5".
* - "precision_x: VALUE" defines the precision used when outputting variables and corresponds to the number
* of digits to be printed after the decimal point. The default value is 8.
* - "precision_f: VALUE" defines the precision used when outputting f values and corresponds to the number of
* digits to be printed after the decimal point. The default value is 15.
* - "precision_g: VALUE" defines the precision used when outputting constraints and corresponds to the number
* of digits to be printed after the decimal point. The default value is 3.
* - "log_discrete_as_int: VALUE" determines whether the values of integer variables (in mixed-integer problems)
* are logged as integers (1) or not (0 - in this case they are logged as doubles). The default value is 0.
*
* @return The constructed observer object or NULL if observer_name equals NULL, "" or "no_observer".
*/
coco_observer_t *coco_observer(const char *observer_name, const char *observer_options) {
coco_observer_t *observer;
char *path, *outer_folder, *result_folder, *algorithm_name, *algorithm_info;
int precision_x, precision_f, precision_g, log_discrete_as_int;
size_t number_target_triggers;
size_t number_evaluation_triggers;
double log_target_precision, lin_target_precision;
char *base_evaluation_triggers;
coco_option_keys_t *known_option_keys, *given_option_keys, *additional_option_keys, *redundant_option_keys;
/* Sets the valid keys for observer options
* IMPORTANT: This list should be up-to-date with the code and the documentation */
const char *known_keys[] = { "outer_folder", "result_folder", "algorithm_name", "algorithm_info",
"number_target_triggers", "log_target_precision", "lin_target_precision", "number_evaluation_triggers",
"base_evaluation_triggers", "precision_x", "precision_f", "precision_g", "log_discrete_as_int" };
additional_option_keys = NULL; /* To be set by the chosen observer */
if (0 == strcmp(observer_name, "no_observer")) {
return NULL;
} else if (strlen(observer_name) == 0) {
coco_warning("coco_observer(): An empty observer_name has no effect. To prevent this warning use 'no_observer' instead");
return NULL;
}
outer_folder = coco_allocate_string(COCO_PATH_MAX + 1);
result_folder = coco_allocate_string(COCO_PATH_MAX + 1);
algorithm_name = coco_allocate_string(COCO_PATH_MAX + 1);
algorithm_info = coco_allocate_string(5 * COCO_PATH_MAX);
if (coco_options_read_string(observer_options, "outer_folder", outer_folder) == 0) {
strcpy(outer_folder, "exdata");
}
if (coco_options_read_string(observer_options, "result_folder", result_folder) == 0) {
strcpy(result_folder, "default");
}
/* Create the result_folder inside the outer folder */
path = coco_allocate_string(COCO_PATH_MAX + 1);
memcpy(path, outer_folder, strlen(outer_folder) + 1);
coco_join_path(path, COCO_PATH_MAX, result_folder, NULL);
coco_create_unique_directory(&path);
coco_info("Results will be output to folder %s", path);
coco_free_memory(outer_folder);
coco_free_memory(result_folder);
if (coco_options_read_string(observer_options, "algorithm_name", algorithm_name) == 0) {
strcpy(algorithm_name, "ALG");
}
if (coco_options_read_string(observer_options, "algorithm_info", algorithm_info) == 0) {
strcpy(algorithm_info, "");
}
number_target_triggers = 100;
if (coco_options_read_size_t(observer_options, "number_target_triggers", &number_target_triggers) != 0) {
if (number_target_triggers < 0) {
coco_warning("coco_observer(): Unsuitable observer option value (number_target_triggers: %lu) ignored",
number_target_triggers);
number_target_triggers = 100;
}
}
log_target_precision = 1e-8;
if (coco_options_read_double(observer_options, "log_target_precision", &log_target_precision) != 0) {
if (log_target_precision <= 0) {
coco_warning("coco_observer(): Unsuitable observer option value (log_target_precision: %f) ignored",
log_target_precision);
log_target_precision = 1e-8;
}
}
lin_target_precision = 1e-5;
if (coco_options_read_double(observer_options, "lin_target_precision", &lin_target_precision) != 0) {
if (lin_target_precision <= 0) {
coco_warning("coco_observer(): Unsuitable observer option value (lin_target_precision: %f) ignored",
lin_target_precision);
lin_target_precision = 1e-5;
}
}
number_evaluation_triggers = 20;
if (coco_options_read_size_t(observer_options, "number_evaluation_triggers", &number_evaluation_triggers) != 0) {
if (number_evaluation_triggers < 4) {
coco_warning("coco_observer(): Unsuitable observer option value (number_evaluation_triggers: %lu) ignored",
number_evaluation_triggers);
number_evaluation_triggers = 20;
}
}
base_evaluation_triggers = coco_allocate_string(COCO_PATH_MAX);
if (coco_options_read_string(observer_options, "base_evaluation_triggers", base_evaluation_triggers) == 0) {
strcpy(base_evaluation_triggers, "1,2,5");
}
precision_x = 8;
if (coco_options_read_int(observer_options, "precision_x", &precision_x) != 0) {
if ((precision_x < 1) || (precision_x > 32)) {
coco_warning("coco_observer(): Unsuitable observer option value (precision_x: %d) ignored", precision_x);
precision_x = 8;
}
}
precision_f = 15;
if (coco_options_read_int(observer_options, "precision_f", &precision_f) != 0) {
if ((precision_f < 1) || (precision_f > 32)) {
coco_warning("coco_observer(): Unsuitable observer option value (precision_f: %d) ignored", precision_f);
precision_f = 15;
}
}
precision_g = 3;
if (coco_options_read_int(observer_options, "precision_g", &precision_g) != 0) {
if ((precision_g < 1) || (precision_g > 32)) {
coco_warning("coco_observer(): Unsuitable observer option value (precision_g: %d) ignored", precision_g);
precision_g = 3;
}
}
log_discrete_as_int = 0;
if (coco_options_read_int(observer_options, "log_discrete_as_int", &log_discrete_as_int) != 0) {
if ((log_discrete_as_int < 0) || (log_discrete_as_int > 1)) {
coco_warning("coco_observer(): Unsuitable observer option value (log_discrete_as_int: %d) ignored",
log_discrete_as_int);
log_discrete_as_int = 0;
}
}
observer = coco_observer_allocate(path, observer_name, algorithm_name, algorithm_info,
number_target_triggers, log_target_precision, lin_target_precision,
number_evaluation_triggers, base_evaluation_triggers, precision_x, precision_f,
precision_g, log_discrete_as_int);
coco_free_memory(path);
coco_free_memory(algorithm_name);
coco_free_memory(algorithm_info);
coco_free_memory(base_evaluation_triggers);
/* Here each observer must have an entry - a call to a specific function that sets the additional_option_keys
* and the following observer fields:
* - logger_allocate_function
* - logger_free_function
* - restart_function
* - data_free_function
* - data */
if (0 == strcmp(observer_name, "toy")) {
observer_toy(observer, observer_options, &additional_option_keys);
} else if (0 == strcmp(observer_name, "bbob")) {
observer_bbob(observer, observer_options, &additional_option_keys);
} else if (0 == strcmp(observer_name, "bbob-old")) {
observer_bbob_old(observer, observer_options, &additional_option_keys);
} else if (0 == strcmp(observer_name, "bbob-biobj")) {
observer_biobj(observer, observer_options, &additional_option_keys);
} else if (0 == strcmp(observer_name, "bbob-biobj-ext")) {
observer_biobj(observer, observer_options, &additional_option_keys);
} else if (0 == strncmp(observer_name, "bbob-constrained", 16)) {
observer_bbob(observer, observer_options, &additional_option_keys);
} else if (0 == strcmp(observer_name, "bbob-largescale")) {
observer_bbob(observer, observer_options, &additional_option_keys);
} else if (0 == strcmp(observer_name, "bbob-mixint")) {
observer_bbob(observer, observer_options, &additional_option_keys);
} else if (0 == strcmp(observer_name, "bbob-biobj-mixint")) {
observer_biobj(observer, observer_options, &additional_option_keys);
} else if (0 == strcmp(observer_name, "rw")) {
observer_rw(observer, observer_options, &additional_option_keys);
} else {
coco_observer_free(observer);
coco_warning("coco_observer(): Unknown observer %s!", observer_name);
return NULL;
}
/* Check for redundant option keys */
known_option_keys = coco_option_keys_allocate(sizeof(known_keys) / sizeof(char *), known_keys);
coco_option_keys_add(&known_option_keys, additional_option_keys);
given_option_keys = coco_option_keys(observer_options);
if (given_option_keys) {
redundant_option_keys = coco_option_keys_get_redundant(known_option_keys, given_option_keys);
if ((redundant_option_keys != NULL) && (redundant_option_keys->count > 0)) {
/* Warn the user that some of given options are being ignored and output the valid options */
char *output_redundant = coco_option_keys_get_output_string(redundant_option_keys,
"coco_observer(): Some keys in observer options were ignored:\n");
char *output_valid = coco_option_keys_get_output_string(known_option_keys,
"Valid keys for observer options are:\n");
coco_warning("%s%s", output_redundant, output_valid);
coco_free_memory(output_redundant);
coco_free_memory(output_valid);
}
coco_option_keys_free(given_option_keys);
coco_option_keys_free(redundant_option_keys);
}
coco_option_keys_free(known_option_keys);
coco_option_keys_free(additional_option_keys);
return observer;
}
/**
* Wraps the observer's logger around the problem if the observer is not NULL and invokes the initialization
* of this logger.
*
* @param problem The given COCO problem.
* @param observer The COCO observer, whose logger will wrap the problem.
*
* @return The observed problem in the form of a new COCO problem instance or the same problem if the
* observer is NULL.
*/
coco_problem_t *coco_problem_add_observer(coco_problem_t *problem, coco_observer_t *observer) {
if (problem == NULL)
return NULL;
if ((observer == NULL) || (observer->is_active == 0)) {
coco_warning("coco_problem_add_observer(): The problem will not be observed. %s",
observer == NULL ? "(observer == NULL)" : "(observer not active)");
return problem;
}
assert(observer->logger_allocate_function);
return observer->logger_allocate_function(observer, problem);
}
/**
* Frees the observer's logger and returns the inner problem.
*
* @param problem The observed COCO problem.
* @param observer The COCO observer, whose logger was wrapping the problem.
*
* @return The unobserved problem as a pointer to the inner problem or the same problem if the problem
* was not observed.
*/
coco_problem_t *coco_problem_remove_observer(coco_problem_t *problem, coco_observer_t *observer) {
coco_problem_t *problem_unobserved;
char *prefix;
if ((observer == NULL) || (observer->is_active == 0)) {
coco_warning("coco_problem_remove_observer(): The problem was not observed. %s",
observer == NULL ? "(observer == NULL)" : "(observer not active)");
return problem;
}
/* Check that we are removing the observer that is actually wrapping the problem.
*
* This is a hack - it assumes that the name of the problem is formatted as "observer_name(problem_name)".
* While not elegant, it does the job and is better than nothing. */
prefix = coco_remove_from_string(problem->problem_name, "(", "");
if (strcmp(prefix, observer->observer_name) != 0) {
coco_error("coco_problem_remove_observer(): trying to remove observer %s instead of %s",
observer->observer_name, prefix);
}
coco_free_memory(prefix);
/* Keep the inner problem and remove the logger data */
problem_unobserved = coco_problem_transformed_get_inner_problem(problem);
coco_problem_transformed_free_data(problem);
problem = NULL;
return problem_unobserved;
}
/**
* Get the result folder name, which is a unique folder name constructed
* from the result_folder option.
*
* @param observer The COCO observer, whose logger may be wrapping a problem.
*
* @return The result folder name, where the logger writes its output.
*/
const char *coco_observer_get_result_folder(const coco_observer_t *observer) {
if (observer == NULL) {
coco_warning("coco_observer_get_result_folder(): no observer to get result_folder from");
return "";
}
else if (observer->is_active == 0) {
coco_warning("coco_observer_get_result_folder(): observer is not active, returning empty string");
return "";
}
return observer->result_folder;
}
/**
* Invokes the logger function that stores the information about restarting the algorithm
* (if such a function exists).
*
* @param problem The observed COCO problem.
* @param observer The COCO observer that will record the restart information.
*/
void coco_observer_signal_restart(coco_observer_t *observer, coco_problem_t *problem) {
if ((observer == NULL) || (observer->is_active == 0)) {
coco_warning("coco_observer_signal_restart(): The problem is not being observed. %s",
observer == NULL ? "(observer == NULL)" : "(observer not active)");
return;
}
if (observer->restart_function == NULL)
coco_info("coco_observer_signal_restart(): Restart signaling not supported for observer %s",
observer->observer_name);
else
observer->restart_function(problem);
}