-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsettings.py
88 lines (67 loc) · 2.63 KB
/
settings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import math
from dataclasses import asdict, dataclass, field
from functools import cached_property
from typing import Callable, Optional
import pytorch_lightning as pl
from pydantic import BaseModel
from pytorch_lightning.loggers import TensorBoardLogger
from datamodule.event_graph import NIRDataModule
from modeling.seen import SEENLongformer as SEENLongformerModel
from modeling.seen import SEENLongformerLarge as SEENLongformerLargeModel
class ExperimentSetting(BaseModel):
datamodule: Callable
model: Callable
class Config:
arbitrary_types_allowed = True
SEENLongformer = ExperimentSetting(datamodule=NIRDataModule, model=SEENLongformerModel)
SEENLongformerLarge = SEENLongformer.copy(update={"model": SEENLongformerLargeModel})
EXP_MAP = {"SEENLongformer": SEENLongformer, "SEENLongformerLarge": SEENLongformerLarge}
BASIC_BATCH = 8
@dataclass
class Arguments:
# process
do_train: bool = field(default=False)
do_val: bool = field(default=False)
do_test: bool = field(default=False)
dev: bool = field(default=False)
epochs: int = field(default=3)
# device
gpus: int = field(default=2)
batch_size: int = field(default=2)
val_batch_size: int = field(default=10)
val_step: int = field(default=5)
# experiment
seed: int = field(default=301)
group: Optional[str] = field(default=None)
exp_name: str = field(default="SEENLongformer")
test_model_path: str = field(default="")
pretrained_path: str = field(default="")
def __post_init__(self):
pl.seed_everything(self.seed, workers=True)
self.experiment: ExperimentSetting = EXP_MAP[self.exp_name]
self.model_class = self.experiment.model
self.datamodule = self.experiment.datamodule(self.batch_size, self.val_batch_size)
self.accumulate_grad_batch = (
None if self.batch_size > BASIC_BATCH else int(math.ceil(BASIC_BATCH / self.batch_size))
)
if sum([self.do_train, self.do_val, self.do_test]) == 0:
self.do_train = self.dev = True
assert sum([self.do_train, self.do_val, self.do_test]) == 1
if self.do_train:
self.job_type = "train"
elif self.do_val:
self.job_type = "val"
elif self.do_test:
self.job_type = "test"
@cached_property
def loggers(self):
loggers = []
if self.do_train:
loggers = [self.tb_logger]
return loggers
@cached_property
def tb_logger(self):
logger = TensorBoardLogger(save_dir="tb_logs", name=self.exp_name)
if self.do_train:
logger.log_hyperparams(asdict(self))
return logger