-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsetup.sh
executable file
·40 lines (29 loc) · 1.2 KB
/
setup.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#!/bin/bash
download_amazon_magazine() {
mkdir datasets/magazine/
link="http://deepyeti.ucsd.edu/jianmo/amazon/categoryFilesSmall/Magazine_Subscriptions.csv"
wget $link -P datasets/magazine/ -q --show-progress
mv datasets/magazine/Magazine_Subscriptions.csv datasets/magazine/data.csv
}
download_ml_100k() {
link="https://files.grouplens.org/datasets/movielens/ml-100k.zip"
wget $link -P datasets/ -q --show-progress
unzip -qq datasets/ml-100k.zip -d datasets/
rm datasets/ml-100k.zip
}
# Where to store the datasets?
mkdir -p datasets/
# Where to store the logs/models of trained models
mkdir -p experiments/sampling_runs/results/logs/trained/
mkdir -p experiments/sampling_runs/results/models/trained/
# Where to store the logs/models of trained proxy models for SVP
mkdir -p experiments/sampling_runs/results/logs/SVP/
mkdir -p experiments/sampling_runs/results/models/SVP/
# Base directory for all Data-Genie experiments
mkdir -p experiments/data_genie/
# Download the 0-core version of an amazon-dataset & the MovieLens dataset
echo "============= Downloading datasets ============="
download_amazon_magazine
download_ml_100k
echo "============= Preprocessing datasets ============="
python preprocess.py