forked from shaoanlu/faceswap-GAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
preprocess.py
60 lines (48 loc) · 2.56 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import keras.backend as K
from moviepy.editor import VideoFileClip
from matplotlib import pyplot as plt
from pathlib import Path
import os
from converter.landmarks_alignment import *
class VideoInfo:
def __init__(self):
self.frame = 0
def process_image(input_img, info, detector, save_interval, save_path):
minsize = 30 # minimum size of face
detec_threshold = 0.9
threshold = [0.7, 0.8, detec_threshold] # three steps's threshold
factor = 0.709 # scale factor
info.frame += 1
frame = info.frame
if frame % save_interval == 0:
faces, pnts = detector.detect_face(input_img, threshold=detec_threshold, use_auto_downscaling=False)
for idx, (x0, y1, x1, y0, conf_score) in enumerate(faces):
det_face_im = input_img[int(x0):int(x1),int(y0):int(y1),:]
# get src/tar landmarks
src_landmarks = get_src_landmarks(x0, x1, y0, y1, pnts)
tar_landmarks = get_tar_landmarks(det_face_im)
# align detected face
aligned_det_face_im = landmarks_match_mtcnn(det_face_im, src_landmarks, tar_landmarks)
Path(os.path.join(f"{save_path}", "rgb")).mkdir(parents=True, exist_ok=True)
fname = os.path.join(f"{save_path}", "rgb", f"frame{frame}face{str(idx)}.jpg")
plt.imsave(fname, aligned_det_face_im, format="jpg")
#fname = f"./faces/raw_faces/frame{frames}face{str(idx)}.jpg"
#plt.imsave(fname, det_face_im, format="jpg")
bm = np.zeros_like(aligned_det_face_im)
h, w = bm.shape[:2]
bm[int(src_landmarks[0][0]-h/15):int(src_landmarks[0][0]+h/15),
int(src_landmarks[0][1]-w/8):int(src_landmarks[0][1]+w/8),:] = 255
bm[int(src_landmarks[1][0]-h/15):int(src_landmarks[1][0]+h/15),
int(src_landmarks[1][1]-w/8):int(src_landmarks[1][1]+w/8),:] = 255
bm = landmarks_match_mtcnn(bm, src_landmarks, tar_landmarks)
Path(os.path.join(f"{save_path}", "binary_mask")).mkdir(parents=True, exist_ok=True)
fname = os.path.join(f"{save_path}", "binary_mask", f"frame{frame}face{str(idx)}.jpg")
plt.imsave(fname, bm, format="jpg")
return np.zeros((3,3,3))
def preprocess_video(fn_input_video, fd, save_interval, save_path):
info = VideoInfo()
output = 'dummy.mp4'
clip1 = VideoFileClip(fn_input_video)
clip = clip1.fl_image(lambda img: process_image(img, info, fd, save_interval, save_path))
clip.write_videofile(output, audio=False, verbose=False)
clip1.reader.close()