-
Notifications
You must be signed in to change notification settings - Fork 29.7k
/
crypto_keys.cc
1411 lines (1229 loc) Β· 44.5 KB
/
crypto_keys.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "crypto/crypto_keys.h"
#include "crypto/crypto_common.h"
#include "crypto/crypto_dsa.h"
#include "crypto/crypto_ec.h"
#include "crypto/crypto_dh.h"
#include "crypto/crypto_rsa.h"
#include "crypto/crypto_util.h"
#include "async_wrap-inl.h"
#include "base_object-inl.h"
#include "env-inl.h"
#include "memory_tracker-inl.h"
#include "node.h"
#include "node_buffer.h"
#include "string_bytes.h"
#include "threadpoolwork-inl.h"
#include "util-inl.h"
#include "v8.h"
namespace node {
using v8::Array;
using v8::Context;
using v8::Function;
using v8::FunctionCallbackInfo;
using v8::FunctionTemplate;
using v8::Int32;
using v8::Just;
using v8::Local;
using v8::Maybe;
using v8::MaybeLocal;
using v8::NewStringType;
using v8::Nothing;
using v8::Number;
using v8::Object;
using v8::String;
using v8::Uint32;
using v8::Undefined;
using v8::Value;
namespace crypto {
namespace {
void GetKeyFormatAndTypeFromJs(
AsymmetricKeyEncodingConfig* config,
const FunctionCallbackInfo<Value>& args,
unsigned int* offset,
KeyEncodingContext context) {
// During key pair generation, it is possible not to specify a key encoding,
// which will lead to a key object being returned.
if (args[*offset]->IsUndefined()) {
CHECK_EQ(context, kKeyContextGenerate);
CHECK(args[*offset + 1]->IsUndefined());
config->output_key_object_ = true;
} else {
config->output_key_object_ = false;
CHECK(args[*offset]->IsInt32());
config->format_ = static_cast<PKFormatType>(
args[*offset].As<Int32>()->Value());
if (args[*offset + 1]->IsInt32()) {
config->type_ = Just<PKEncodingType>(static_cast<PKEncodingType>(
args[*offset + 1].As<Int32>()->Value()));
} else {
CHECK(
(context == kKeyContextInput &&
config->format_ == kKeyFormatPEM) ||
(context == kKeyContextGenerate &&
config->format_ == kKeyFormatJWK));
CHECK(args[*offset + 1]->IsNullOrUndefined());
config->type_ = Nothing<PKEncodingType>();
}
}
*offset += 2;
}
ParseKeyResult TryParsePublicKey(
EVPKeyPointer* pkey,
const BIOPointer& bp,
const char* name,
// NOLINTNEXTLINE(runtime/int)
const std::function<EVP_PKEY*(const unsigned char** p, long l)>& parse) {
unsigned char* der_data;
long der_len; // NOLINT(runtime/int)
// This skips surrounding data and decodes PEM to DER.
{
MarkPopErrorOnReturn mark_pop_error_on_return;
if (PEM_bytes_read_bio(&der_data, &der_len, nullptr, name,
bp.get(), nullptr, nullptr) != 1)
return ParseKeyResult::kParseKeyNotRecognized;
}
// OpenSSL might modify the pointer, so we need to make a copy before parsing.
const unsigned char* p = der_data;
pkey->reset(parse(&p, der_len));
OPENSSL_clear_free(der_data, der_len);
return *pkey ? ParseKeyResult::kParseKeyOk :
ParseKeyResult::kParseKeyFailed;
}
ParseKeyResult ParsePublicKeyPEM(EVPKeyPointer* pkey,
const char* key_pem,
int key_pem_len) {
BIOPointer bp(BIO_new_mem_buf(const_cast<char*>(key_pem), key_pem_len));
if (!bp)
return ParseKeyResult::kParseKeyFailed;
ParseKeyResult ret;
// Try parsing as a SubjectPublicKeyInfo first.
ret = TryParsePublicKey(pkey, bp, "PUBLIC KEY",
[](const unsigned char** p, long l) { // NOLINT(runtime/int)
return d2i_PUBKEY(nullptr, p, l);
});
if (ret != ParseKeyResult::kParseKeyNotRecognized)
return ret;
// Maybe it is PKCS#1.
CHECK(BIO_reset(bp.get()));
ret = TryParsePublicKey(pkey, bp, "RSA PUBLIC KEY",
[](const unsigned char** p, long l) { // NOLINT(runtime/int)
return d2i_PublicKey(EVP_PKEY_RSA, nullptr, p, l);
});
if (ret != ParseKeyResult::kParseKeyNotRecognized)
return ret;
// X.509 fallback.
CHECK(BIO_reset(bp.get()));
return TryParsePublicKey(pkey, bp, "CERTIFICATE",
[](const unsigned char** p, long l) { // NOLINT(runtime/int)
X509Pointer x509(d2i_X509(nullptr, p, l));
return x509 ? X509_get_pubkey(x509.get()) : nullptr;
});
}
ParseKeyResult ParsePublicKey(EVPKeyPointer* pkey,
const PublicKeyEncodingConfig& config,
const char* key,
size_t key_len) {
if (config.format_ == kKeyFormatPEM) {
return ParsePublicKeyPEM(pkey, key, key_len);
} else {
CHECK_EQ(config.format_, kKeyFormatDER);
const unsigned char* p = reinterpret_cast<const unsigned char*>(key);
if (config.type_.ToChecked() == kKeyEncodingPKCS1) {
pkey->reset(d2i_PublicKey(EVP_PKEY_RSA, nullptr, &p, key_len));
} else {
CHECK_EQ(config.type_.ToChecked(), kKeyEncodingSPKI);
pkey->reset(d2i_PUBKEY(nullptr, &p, key_len));
}
return *pkey ? ParseKeyResult::kParseKeyOk :
ParseKeyResult::kParseKeyFailed;
}
}
bool IsASN1Sequence(const unsigned char* data, size_t size,
size_t* data_offset, size_t* data_size) {
if (size < 2 || data[0] != 0x30)
return false;
if (data[1] & 0x80) {
// Long form.
size_t n_bytes = data[1] & ~0x80;
if (n_bytes + 2 > size || n_bytes > sizeof(size_t))
return false;
size_t length = 0;
for (size_t i = 0; i < n_bytes; i++)
length = (length << 8) | data[i + 2];
*data_offset = 2 + n_bytes;
*data_size = std::min(size - 2 - n_bytes, length);
} else {
// Short form.
*data_offset = 2;
*data_size = std::min<size_t>(size - 2, data[1]);
}
return true;
}
bool IsRSAPrivateKey(const unsigned char* data, size_t size) {
// Both RSAPrivateKey and RSAPublicKey structures start with a SEQUENCE.
size_t offset, len;
if (!IsASN1Sequence(data, size, &offset, &len))
return false;
// An RSAPrivateKey sequence always starts with a single-byte integer whose
// value is either 0 or 1, whereas an RSAPublicKey starts with the modulus
// (which is the product of two primes and therefore at least 4), so we can
// decide the type of the structure based on the first three bytes of the
// sequence.
return len >= 3 &&
data[offset] == 2 &&
data[offset + 1] == 1 &&
!(data[offset + 2] & 0xfe);
}
bool IsEncryptedPrivateKeyInfo(const unsigned char* data, size_t size) {
// Both PrivateKeyInfo and EncryptedPrivateKeyInfo start with a SEQUENCE.
size_t offset, len;
if (!IsASN1Sequence(data, size, &offset, &len))
return false;
// A PrivateKeyInfo sequence always starts with an integer whereas an
// EncryptedPrivateKeyInfo starts with an AlgorithmIdentifier.
return len >= 1 &&
data[offset] != 2;
}
ParseKeyResult ParsePrivateKey(EVPKeyPointer* pkey,
const PrivateKeyEncodingConfig& config,
const char* key,
size_t key_len) {
const ByteSource* passphrase = config.passphrase_.get();
if (config.format_ == kKeyFormatPEM) {
BIOPointer bio(BIO_new_mem_buf(key, key_len));
if (!bio)
return ParseKeyResult::kParseKeyFailed;
pkey->reset(PEM_read_bio_PrivateKey(bio.get(),
nullptr,
PasswordCallback,
&passphrase));
} else {
CHECK_EQ(config.format_, kKeyFormatDER);
if (config.type_.ToChecked() == kKeyEncodingPKCS1) {
const unsigned char* p = reinterpret_cast<const unsigned char*>(key);
pkey->reset(d2i_PrivateKey(EVP_PKEY_RSA, nullptr, &p, key_len));
} else if (config.type_.ToChecked() == kKeyEncodingPKCS8) {
BIOPointer bio(BIO_new_mem_buf(key, key_len));
if (!bio)
return ParseKeyResult::kParseKeyFailed;
if (IsEncryptedPrivateKeyInfo(
reinterpret_cast<const unsigned char*>(key), key_len)) {
pkey->reset(d2i_PKCS8PrivateKey_bio(bio.get(),
nullptr,
PasswordCallback,
&passphrase));
} else {
PKCS8Pointer p8inf(d2i_PKCS8_PRIV_KEY_INFO_bio(bio.get(), nullptr));
if (p8inf)
pkey->reset(EVP_PKCS82PKEY(p8inf.get()));
}
} else {
CHECK_EQ(config.type_.ToChecked(), kKeyEncodingSEC1);
const unsigned char* p = reinterpret_cast<const unsigned char*>(key);
pkey->reset(d2i_PrivateKey(EVP_PKEY_EC, nullptr, &p, key_len));
}
}
// OpenSSL can fail to parse the key but still return a non-null pointer.
unsigned long err = ERR_peek_error(); // NOLINT(runtime/int)
if (err != 0)
pkey->reset();
if (*pkey)
return ParseKeyResult::kParseKeyOk;
if (ERR_GET_LIB(err) == ERR_LIB_PEM &&
ERR_GET_REASON(err) == PEM_R_BAD_PASSWORD_READ) {
if (config.passphrase_.IsEmpty())
return ParseKeyResult::kParseKeyNeedPassphrase;
}
return ParseKeyResult::kParseKeyFailed;
}
MaybeLocal<Value> BIOToStringOrBuffer(
Environment* env,
BIO* bio,
PKFormatType format) {
BUF_MEM* bptr;
BIO_get_mem_ptr(bio, &bptr);
if (format == kKeyFormatPEM) {
// PEM is an ASCII format, so we will return it as a string.
return String::NewFromUtf8(env->isolate(), bptr->data,
NewStringType::kNormal,
bptr->length).FromMaybe(Local<Value>());
} else {
CHECK_EQ(format, kKeyFormatDER);
// DER is binary, return it as a buffer.
return Buffer::Copy(env, bptr->data, bptr->length)
.FromMaybe(Local<Value>());
}
}
MaybeLocal<Value> WritePrivateKey(
Environment* env,
EVP_PKEY* pkey,
const PrivateKeyEncodingConfig& config) {
BIOPointer bio(BIO_new(BIO_s_mem()));
CHECK(bio);
// If an empty string was passed as the passphrase, the ByteSource might
// contain a null pointer, which OpenSSL will ignore, causing it to invoke its
// default passphrase callback, which would block the thread until the user
// manually enters a passphrase. We could supply our own passphrase callback
// to handle this special case, but it is easier to avoid passing a null
// pointer to OpenSSL.
char* pass = nullptr;
size_t pass_len = 0;
if (!config.passphrase_.IsEmpty()) {
pass = const_cast<char*>(config.passphrase_->get());
pass_len = config.passphrase_->size();
if (pass == nullptr) {
// OpenSSL will not actually dereference this pointer, so it can be any
// non-null pointer. We cannot assert that directly, which is why we
// intentionally use a pointer that will likely cause a segmentation fault
// when dereferenced.
CHECK_EQ(pass_len, 0);
pass = reinterpret_cast<char*>(-1);
CHECK_NE(pass, nullptr);
}
}
bool err;
PKEncodingType encoding_type = config.type_.ToChecked();
if (encoding_type == kKeyEncodingPKCS1) {
// PKCS#1 is only permitted for RSA keys.
CHECK_EQ(EVP_PKEY_id(pkey), EVP_PKEY_RSA);
RSAPointer rsa(EVP_PKEY_get1_RSA(pkey));
if (config.format_ == kKeyFormatPEM) {
// Encode PKCS#1 as PEM.
err = PEM_write_bio_RSAPrivateKey(
bio.get(), rsa.get(),
config.cipher_,
reinterpret_cast<unsigned char*>(pass),
pass_len,
nullptr, nullptr) != 1;
} else {
// Encode PKCS#1 as DER. This does not permit encryption.
CHECK_EQ(config.format_, kKeyFormatDER);
CHECK_NULL(config.cipher_);
err = i2d_RSAPrivateKey_bio(bio.get(), rsa.get()) != 1;
}
} else if (encoding_type == kKeyEncodingPKCS8) {
if (config.format_ == kKeyFormatPEM) {
// Encode PKCS#8 as PEM.
err = PEM_write_bio_PKCS8PrivateKey(
bio.get(), pkey,
config.cipher_,
pass,
pass_len,
nullptr, nullptr) != 1;
} else {
// Encode PKCS#8 as DER.
CHECK_EQ(config.format_, kKeyFormatDER);
err = i2d_PKCS8PrivateKey_bio(
bio.get(), pkey,
config.cipher_,
pass,
pass_len,
nullptr, nullptr) != 1;
}
} else {
CHECK_EQ(encoding_type, kKeyEncodingSEC1);
// SEC1 is only permitted for EC keys.
CHECK_EQ(EVP_PKEY_id(pkey), EVP_PKEY_EC);
ECKeyPointer ec_key(EVP_PKEY_get1_EC_KEY(pkey));
if (config.format_ == kKeyFormatPEM) {
// Encode SEC1 as PEM.
err = PEM_write_bio_ECPrivateKey(
bio.get(), ec_key.get(),
config.cipher_,
reinterpret_cast<unsigned char*>(pass),
pass_len,
nullptr, nullptr) != 1;
} else {
// Encode SEC1 as DER. This does not permit encryption.
CHECK_EQ(config.format_, kKeyFormatDER);
CHECK_NULL(config.cipher_);
err = i2d_ECPrivateKey_bio(bio.get(), ec_key.get()) != 1;
}
}
if (err) {
ThrowCryptoError(env, ERR_get_error(), "Failed to encode private key");
return MaybeLocal<Value>();
}
return BIOToStringOrBuffer(env, bio.get(), config.format_);
}
bool WritePublicKeyInner(EVP_PKEY* pkey,
const BIOPointer& bio,
const PublicKeyEncodingConfig& config) {
if (config.type_.ToChecked() == kKeyEncodingPKCS1) {
// PKCS#1 is only valid for RSA keys.
CHECK_EQ(EVP_PKEY_id(pkey), EVP_PKEY_RSA);
RSAPointer rsa(EVP_PKEY_get1_RSA(pkey));
if (config.format_ == kKeyFormatPEM) {
// Encode PKCS#1 as PEM.
return PEM_write_bio_RSAPublicKey(bio.get(), rsa.get()) == 1;
} else {
// Encode PKCS#1 as DER.
CHECK_EQ(config.format_, kKeyFormatDER);
return i2d_RSAPublicKey_bio(bio.get(), rsa.get()) == 1;
}
} else {
CHECK_EQ(config.type_.ToChecked(), kKeyEncodingSPKI);
if (config.format_ == kKeyFormatPEM) {
// Encode SPKI as PEM.
return PEM_write_bio_PUBKEY(bio.get(), pkey) == 1;
} else {
// Encode SPKI as DER.
CHECK_EQ(config.format_, kKeyFormatDER);
return i2d_PUBKEY_bio(bio.get(), pkey) == 1;
}
}
}
MaybeLocal<Value> WritePublicKey(Environment* env,
EVP_PKEY* pkey,
const PublicKeyEncodingConfig& config) {
BIOPointer bio(BIO_new(BIO_s_mem()));
CHECK(bio);
if (!WritePublicKeyInner(pkey, bio, config)) {
ThrowCryptoError(env, ERR_get_error(), "Failed to encode public key");
return MaybeLocal<Value>();
}
return BIOToStringOrBuffer(env, bio.get(), config.format_);
}
Maybe<bool> ExportJWKSecretKey(
Environment* env,
std::shared_ptr<KeyObjectData> key,
Local<Object> target) {
CHECK_EQ(key->GetKeyType(), kKeyTypeSecret);
Local<Value> error;
Local<Value> raw;
MaybeLocal<Value> key_data =
StringBytes::Encode(
env->isolate(),
key->GetSymmetricKey(),
key->GetSymmetricKeySize(),
BASE64URL,
&error);
if (key_data.IsEmpty()) {
CHECK(!error.IsEmpty());
env->isolate()->ThrowException(error);
return Nothing<bool>();
}
if (!key_data.ToLocal(&raw))
return Nothing<bool>();
if (target->Set(
env->context(),
env->jwk_kty_string(),
env->jwk_oct_string()).IsNothing() ||
target->Set(
env->context(),
env->jwk_k_string(),
raw).IsNothing()) {
return Nothing<bool>();
}
return Just(true);
}
std::shared_ptr<KeyObjectData> ImportJWKSecretKey(
Environment* env,
Local<Object> jwk) {
Local<Value> key;
if (!jwk->Get(env->context(), env->jwk_k_string()).ToLocal(&key) ||
!key->IsString()) {
THROW_ERR_CRYPTO_INVALID_JWK(env, "Invalid JWK secret key format");
return std::shared_ptr<KeyObjectData>();
}
ByteSource key_data = ByteSource::FromEncodedString(env, key.As<String>());
if (key_data.size() > INT_MAX) {
THROW_ERR_CRYPTO_INVALID_KEYLEN(env);
return std::shared_ptr<KeyObjectData>();
}
return KeyObjectData::CreateSecret(std::move(key_data));
}
Maybe<bool> ExportJWKAsymmetricKey(
Environment* env,
std::shared_ptr<KeyObjectData> key,
Local<Object> target,
bool handleRsaPss) {
switch (EVP_PKEY_id(key->GetAsymmetricKey().get())) {
case EVP_PKEY_RSA_PSS: {
if (handleRsaPss) return ExportJWKRsaKey(env, key, target);
break;
}
case EVP_PKEY_RSA: return ExportJWKRsaKey(env, key, target);
case EVP_PKEY_EC: return ExportJWKEcKey(env, key, target);
case EVP_PKEY_ED25519:
// Fall through
case EVP_PKEY_ED448:
// Fall through
case EVP_PKEY_X25519:
// Fall through
case EVP_PKEY_X448: return ExportJWKEdKey(env, key, target);
}
THROW_ERR_CRYPTO_JWK_UNSUPPORTED_KEY_TYPE(env);
return Just(false);
}
std::shared_ptr<KeyObjectData> ImportJWKAsymmetricKey(
Environment* env,
Local<Object> jwk,
const char* kty,
const FunctionCallbackInfo<Value>& args,
unsigned int offset) {
if (strcmp(kty, "RSA") == 0) {
return ImportJWKRsaKey(env, jwk, args, offset);
} else if (strcmp(kty, "EC") == 0) {
return ImportJWKEcKey(env, jwk, args, offset);
}
THROW_ERR_CRYPTO_INVALID_JWK(env, "%s is not a supported JWK key type", kty);
return std::shared_ptr<KeyObjectData>();
}
Maybe<bool> GetSecretKeyDetail(
Environment* env,
std::shared_ptr<KeyObjectData> key,
Local<Object> target) {
// For the secret key detail, all we care about is the length,
// converted to bits.
size_t length = key->GetSymmetricKeySize() * CHAR_BIT;
return target->Set(env->context(),
env->length_string(),
Number::New(env->isolate(), static_cast<double>(length)));
}
Maybe<bool> GetAsymmetricKeyDetail(
Environment* env,
std::shared_ptr<KeyObjectData> key,
Local<Object> target) {
switch (EVP_PKEY_id(key->GetAsymmetricKey().get())) {
case EVP_PKEY_RSA:
// Fall through
case EVP_PKEY_RSA_PSS: return GetRsaKeyDetail(env, key, target);
case EVP_PKEY_DSA: return GetDsaKeyDetail(env, key, target);
case EVP_PKEY_EC: return GetEcKeyDetail(env, key, target);
case EVP_PKEY_DH: return GetDhKeyDetail(env, key, target);
}
THROW_ERR_CRYPTO_INVALID_KEYTYPE(env);
return Nothing<bool>();
}
} // namespace
ManagedEVPPKey::ManagedEVPPKey(EVPKeyPointer&& pkey) : pkey_(std::move(pkey)),
mutex_(std::make_shared<Mutex>()) {}
ManagedEVPPKey::ManagedEVPPKey(const ManagedEVPPKey& that) {
*this = that;
}
ManagedEVPPKey& ManagedEVPPKey::operator=(const ManagedEVPPKey& that) {
Mutex::ScopedLock lock(*that.mutex_);
pkey_.reset(that.get());
if (pkey_)
EVP_PKEY_up_ref(pkey_.get());
mutex_ = that.mutex_;
return *this;
}
ManagedEVPPKey::operator bool() const {
return !!pkey_;
}
EVP_PKEY* ManagedEVPPKey::get() const {
return pkey_.get();
}
Mutex* ManagedEVPPKey::mutex() const {
return mutex_.get();
}
void ManagedEVPPKey::MemoryInfo(MemoryTracker* tracker) const {
tracker->TrackFieldWithSize("pkey",
!pkey_ ? 0 : kSizeOf_EVP_PKEY +
size_of_private_key() +
size_of_public_key());
}
size_t ManagedEVPPKey::size_of_private_key() const {
size_t len = 0;
return (pkey_ && EVP_PKEY_get_raw_private_key(
pkey_.get(), nullptr, &len) == 1) ? len : 0;
}
size_t ManagedEVPPKey::size_of_public_key() const {
size_t len = 0;
return (pkey_ && EVP_PKEY_get_raw_public_key(
pkey_.get(), nullptr, &len) == 1) ? len : 0;
}
// This maps true to Just<bool>(true) and false to Nothing<bool>().
static inline Maybe<bool> Tristate(bool b) {
return b ? Just(true) : Nothing<bool>();
}
Maybe<bool> ExportJWKInner(Environment* env,
std::shared_ptr<KeyObjectData> key,
Local<Value> result,
bool handleRsaPss) {
switch (key->GetKeyType()) {
case kKeyTypeSecret:
return ExportJWKSecretKey(env, key, result.As<Object>());
case kKeyTypePublic:
// Fall through
case kKeyTypePrivate:
return ExportJWKAsymmetricKey(
env, key, result.As<Object>(), handleRsaPss);
default:
UNREACHABLE();
}
}
Maybe<bool> ManagedEVPPKey::ToEncodedPublicKey(
Environment* env,
ManagedEVPPKey key,
const PublicKeyEncodingConfig& config,
Local<Value>* out) {
if (!key) return Nothing<bool>();
if (config.output_key_object_) {
// Note that this has the downside of containing sensitive data of the
// private key.
std::shared_ptr<KeyObjectData> data =
KeyObjectData::CreateAsymmetric(kKeyTypePublic, std::move(key));
return Tristate(KeyObjectHandle::Create(env, data).ToLocal(out));
} else if (config.format_ == kKeyFormatJWK) {
std::shared_ptr<KeyObjectData> data =
KeyObjectData::CreateAsymmetric(kKeyTypePublic, std::move(key));
*out = Object::New(env->isolate());
return ExportJWKInner(env, data, *out, false);
}
return Tristate(WritePublicKey(env, key.get(), config).ToLocal(out));
}
Maybe<bool> ManagedEVPPKey::ToEncodedPrivateKey(
Environment* env,
ManagedEVPPKey key,
const PrivateKeyEncodingConfig& config,
Local<Value>* out) {
if (!key) return Nothing<bool>();
if (config.output_key_object_) {
std::shared_ptr<KeyObjectData> data =
KeyObjectData::CreateAsymmetric(kKeyTypePrivate, std::move(key));
return Tristate(KeyObjectHandle::Create(env, data).ToLocal(out));
} else if (config.format_ == kKeyFormatJWK) {
std::shared_ptr<KeyObjectData> data =
KeyObjectData::CreateAsymmetric(kKeyTypePrivate, std::move(key));
*out = Object::New(env->isolate());
return ExportJWKInner(env, data, *out, false);
}
return Tristate(WritePrivateKey(env, key.get(), config).ToLocal(out));
}
NonCopyableMaybe<PrivateKeyEncodingConfig>
ManagedEVPPKey::GetPrivateKeyEncodingFromJs(
const FunctionCallbackInfo<Value>& args,
unsigned int* offset,
KeyEncodingContext context) {
Environment* env = Environment::GetCurrent(args);
PrivateKeyEncodingConfig result;
GetKeyFormatAndTypeFromJs(&result, args, offset, context);
if (result.output_key_object_) {
if (context != kKeyContextInput)
(*offset)++;
} else {
bool needs_passphrase = false;
if (context != kKeyContextInput) {
if (args[*offset]->IsString()) {
Utf8Value cipher_name(env->isolate(), args[*offset]);
result.cipher_ = EVP_get_cipherbyname(*cipher_name);
if (result.cipher_ == nullptr) {
THROW_ERR_CRYPTO_UNKNOWN_CIPHER(env);
return NonCopyableMaybe<PrivateKeyEncodingConfig>();
}
needs_passphrase = true;
} else {
CHECK(args[*offset]->IsNullOrUndefined());
result.cipher_ = nullptr;
}
(*offset)++;
}
if (IsAnyByteSource(args[*offset])) {
CHECK_IMPLIES(context != kKeyContextInput, result.cipher_ != nullptr);
ArrayBufferOrViewContents<char> passphrase(args[*offset]);
if (UNLIKELY(!passphrase.CheckSizeInt32())) {
THROW_ERR_OUT_OF_RANGE(env, "passphrase is too big");
return NonCopyableMaybe<PrivateKeyEncodingConfig>();
}
result.passphrase_ = NonCopyableMaybe<ByteSource>(
passphrase.ToNullTerminatedCopy());
} else {
CHECK(args[*offset]->IsNullOrUndefined() && !needs_passphrase);
}
}
(*offset)++;
return NonCopyableMaybe<PrivateKeyEncodingConfig>(std::move(result));
}
PublicKeyEncodingConfig ManagedEVPPKey::GetPublicKeyEncodingFromJs(
const FunctionCallbackInfo<Value>& args,
unsigned int* offset,
KeyEncodingContext context) {
PublicKeyEncodingConfig result;
GetKeyFormatAndTypeFromJs(&result, args, offset, context);
return result;
}
ManagedEVPPKey ManagedEVPPKey::GetPrivateKeyFromJs(
const FunctionCallbackInfo<Value>& args,
unsigned int* offset,
bool allow_key_object) {
if (args[*offset]->IsString() || IsAnyByteSource(args[*offset])) {
Environment* env = Environment::GetCurrent(args);
ByteSource key = ByteSource::FromStringOrBuffer(env, args[(*offset)++]);
NonCopyableMaybe<PrivateKeyEncodingConfig> config =
GetPrivateKeyEncodingFromJs(args, offset, kKeyContextInput);
if (config.IsEmpty())
return ManagedEVPPKey();
EVPKeyPointer pkey;
ParseKeyResult ret =
ParsePrivateKey(&pkey, config.Release(), key.get(), key.size());
return GetParsedKey(env, std::move(pkey), ret,
"Failed to read private key");
} else {
CHECK(args[*offset]->IsObject() && allow_key_object);
KeyObjectHandle* key;
ASSIGN_OR_RETURN_UNWRAP(&key, args[*offset].As<Object>(), ManagedEVPPKey());
CHECK_EQ(key->Data()->GetKeyType(), kKeyTypePrivate);
(*offset) += 4;
return key->Data()->GetAsymmetricKey();
}
}
ManagedEVPPKey ManagedEVPPKey::GetPublicOrPrivateKeyFromJs(
const FunctionCallbackInfo<Value>& args,
unsigned int* offset) {
if (IsAnyByteSource(args[*offset])) {
Environment* env = Environment::GetCurrent(args);
ArrayBufferOrViewContents<char> data(args[(*offset)++]);
if (UNLIKELY(!data.CheckSizeInt32())) {
THROW_ERR_OUT_OF_RANGE(env, "keyData is too big");
return ManagedEVPPKey();
}
NonCopyableMaybe<PrivateKeyEncodingConfig> config_ =
GetPrivateKeyEncodingFromJs(args, offset, kKeyContextInput);
if (config_.IsEmpty())
return ManagedEVPPKey();
ParseKeyResult ret;
PrivateKeyEncodingConfig config = config_.Release();
EVPKeyPointer pkey;
if (config.format_ == kKeyFormatPEM) {
// For PEM, we can easily determine whether it is a public or private key
// by looking for the respective PEM tags.
ret = ParsePublicKeyPEM(&pkey, data.data(), data.size());
if (ret == ParseKeyResult::kParseKeyNotRecognized) {
ret = ParsePrivateKey(&pkey, config, data.data(), data.size());
}
} else {
// For DER, the type determines how to parse it. SPKI, PKCS#8 and SEC1 are
// easy, but PKCS#1 can be a public key or a private key.
bool is_public;
switch (config.type_.ToChecked()) {
case kKeyEncodingPKCS1:
is_public = !IsRSAPrivateKey(
reinterpret_cast<const unsigned char*>(data.data()), data.size());
break;
case kKeyEncodingSPKI:
is_public = true;
break;
case kKeyEncodingPKCS8:
case kKeyEncodingSEC1:
is_public = false;
break;
default:
UNREACHABLE("Invalid key encoding type");
}
if (is_public) {
ret = ParsePublicKey(&pkey, config, data.data(), data.size());
} else {
ret = ParsePrivateKey(&pkey, config, data.data(), data.size());
}
}
return ManagedEVPPKey::GetParsedKey(
env, std::move(pkey), ret, "Failed to read asymmetric key");
} else {
CHECK(args[*offset]->IsObject());
KeyObjectHandle* key = Unwrap<KeyObjectHandle>(args[*offset].As<Object>());
CHECK_NOT_NULL(key);
CHECK_NE(key->Data()->GetKeyType(), kKeyTypeSecret);
(*offset) += 4;
return key->Data()->GetAsymmetricKey();
}
}
ManagedEVPPKey ManagedEVPPKey::GetParsedKey(Environment* env,
EVPKeyPointer&& pkey,
ParseKeyResult ret,
const char* default_msg) {
switch (ret) {
case ParseKeyResult::kParseKeyOk:
CHECK(pkey);
break;
case ParseKeyResult::kParseKeyNeedPassphrase:
THROW_ERR_MISSING_PASSPHRASE(env,
"Passphrase required for encrypted key");
break;
default:
ThrowCryptoError(env, ERR_get_error(), default_msg);
}
return ManagedEVPPKey(std::move(pkey));
}
KeyObjectData::KeyObjectData(
ByteSource symmetric_key)
: key_type_(KeyType::kKeyTypeSecret),
symmetric_key_(std::move(symmetric_key)),
symmetric_key_len_(symmetric_key_.size()),
asymmetric_key_() {}
KeyObjectData::KeyObjectData(
KeyType type,
const ManagedEVPPKey& pkey)
: key_type_(type),
symmetric_key_(),
symmetric_key_len_(0),
asymmetric_key_{pkey} {}
void KeyObjectData::MemoryInfo(MemoryTracker* tracker) const {
switch (GetKeyType()) {
case kKeyTypeSecret:
tracker->TrackFieldWithSize("symmetric_key", symmetric_key_.size());
break;
case kKeyTypePrivate:
// Fall through
case kKeyTypePublic:
tracker->TrackFieldWithSize("key", asymmetric_key_);
break;
default:
UNREACHABLE();
}
}
std::shared_ptr<KeyObjectData> KeyObjectData::CreateSecret(ByteSource key) {
CHECK(key);
return std::shared_ptr<KeyObjectData>(new KeyObjectData(std::move(key)));
}
std::shared_ptr<KeyObjectData> KeyObjectData::CreateAsymmetric(
KeyType key_type,
const ManagedEVPPKey& pkey) {
CHECK(pkey);
return std::shared_ptr<KeyObjectData>(new KeyObjectData(key_type, pkey));
}
KeyType KeyObjectData::GetKeyType() const {
return key_type_;
}
ManagedEVPPKey KeyObjectData::GetAsymmetricKey() const {
CHECK_NE(key_type_, kKeyTypeSecret);
return asymmetric_key_;
}
const char* KeyObjectData::GetSymmetricKey() const {
CHECK_EQ(key_type_, kKeyTypeSecret);
return symmetric_key_.get();
}
size_t KeyObjectData::GetSymmetricKeySize() const {
CHECK_EQ(key_type_, kKeyTypeSecret);
return symmetric_key_len_;
}
v8::Local<v8::Function> KeyObjectHandle::Initialize(Environment* env) {
Local<Function> templ = env->crypto_key_object_handle_constructor();
if (!templ.IsEmpty()) {
return templ;
}
Local<FunctionTemplate> t = env->NewFunctionTemplate(New);
t->InstanceTemplate()->SetInternalFieldCount(
KeyObjectHandle::kInternalFieldCount);
t->Inherit(BaseObject::GetConstructorTemplate(env));
env->SetProtoMethod(t, "init", Init);
env->SetProtoMethodNoSideEffect(t, "getSymmetricKeySize",
GetSymmetricKeySize);
env->SetProtoMethodNoSideEffect(t, "getAsymmetricKeyType",
GetAsymmetricKeyType);
env->SetProtoMethod(t, "export", Export);
env->SetProtoMethod(t, "exportJwk", ExportJWK);
env->SetProtoMethod(t, "initECRaw", InitECRaw);
env->SetProtoMethod(t, "initEDRaw", InitEDRaw);
env->SetProtoMethod(t, "initJwk", InitJWK);
env->SetProtoMethod(t, "keyDetail", GetKeyDetail);
auto function = t->GetFunction(env->context()).ToLocalChecked();
env->set_crypto_key_object_handle_constructor(function);
return function;
}
MaybeLocal<Object> KeyObjectHandle::Create(
Environment* env,
std::shared_ptr<KeyObjectData> data) {
Local<Object> obj;
Local<Function> ctor = KeyObjectHandle::Initialize(env);
CHECK(!env->crypto_key_object_handle_constructor().IsEmpty());
if (!ctor->NewInstance(env->context(), 0, nullptr).ToLocal(&obj))
return MaybeLocal<Object>();
KeyObjectHandle* key = Unwrap<KeyObjectHandle>(obj);
CHECK_NOT_NULL(key);
key->data_ = data;
return obj;
}
const std::shared_ptr<KeyObjectData>& KeyObjectHandle::Data() {
return data_;
}
void KeyObjectHandle::New(const FunctionCallbackInfo<Value>& args) {
CHECK(args.IsConstructCall());
Environment* env = Environment::GetCurrent(args);
new KeyObjectHandle(env, args.This());
}
KeyObjectHandle::KeyObjectHandle(Environment* env,
Local<Object> wrap)
: BaseObject(env, wrap) {
MakeWeak();
}
void KeyObjectHandle::Init(const FunctionCallbackInfo<Value>& args) {
KeyObjectHandle* key;
ASSIGN_OR_RETURN_UNWRAP(&key, args.Holder());
MarkPopErrorOnReturn mark_pop_error_on_return;
CHECK(args[0]->IsInt32());
KeyType type = static_cast<KeyType>(args[0].As<Uint32>()->Value());
unsigned int offset;
ManagedEVPPKey pkey;
switch (type) {
case kKeyTypeSecret: {
CHECK_EQ(args.Length(), 2);
ArrayBufferOrViewContents<char> buf(args[1]);
key->data_ = KeyObjectData::CreateSecret(buf.ToCopy());
break;
}
case kKeyTypePublic: {
CHECK_EQ(args.Length(), 5);
offset = 1;
pkey = ManagedEVPPKey::GetPublicOrPrivateKeyFromJs(args, &offset);
if (!pkey)
return;
key->data_ = KeyObjectData::CreateAsymmetric(type, pkey);
break;
}
case kKeyTypePrivate: {
CHECK_EQ(args.Length(), 5);
offset = 1;
pkey = ManagedEVPPKey::GetPrivateKeyFromJs(args, &offset, false);
if (!pkey)
return;
key->data_ = KeyObjectData::CreateAsymmetric(type, pkey);
break;
}
default:
UNREACHABLE();