-
Notifications
You must be signed in to change notification settings - Fork 30.3k
/
Copy pathtest.md
3690 lines (2984 loc) Β· 116 KB
/
test.md
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Test runner
<!--introduced_in=v18.0.0-->
<!-- YAML
added:
- v18.0.0
- v16.17.0
changes:
- version: v20.0.0
pr-url: https://github.com/nodejs/node/pull/46983
description: The test runner is now stable.
-->
> Stability: 2 - Stable
<!-- source_link=lib/test.js -->
The `node:test` module facilitates the creation of JavaScript tests.
To access it:
```mjs
import test from 'node:test';
```
```cjs
const test = require('node:test');
```
This module is only available under the `node:` scheme.
Tests created via the `test` module consist of a single function that is
processed in one of three ways:
1. A synchronous function that is considered failing if it throws an exception,
and is considered passing otherwise.
2. A function that returns a `Promise` that is considered failing if the
`Promise` rejects, and is considered passing if the `Promise` fulfills.
3. A function that receives a callback function. If the callback receives any
truthy value as its first argument, the test is considered failing. If a
falsy value is passed as the first argument to the callback, the test is
considered passing. If the test function receives a callback function and
also returns a `Promise`, the test will fail.
The following example illustrates how tests are written using the
`test` module.
```js
test('synchronous passing test', (t) => {
// This test passes because it does not throw an exception.
assert.strictEqual(1, 1);
});
test('synchronous failing test', (t) => {
// This test fails because it throws an exception.
assert.strictEqual(1, 2);
});
test('asynchronous passing test', async (t) => {
// This test passes because the Promise returned by the async
// function is settled and not rejected.
assert.strictEqual(1, 1);
});
test('asynchronous failing test', async (t) => {
// This test fails because the Promise returned by the async
// function is rejected.
assert.strictEqual(1, 2);
});
test('failing test using Promises', (t) => {
// Promises can be used directly as well.
return new Promise((resolve, reject) => {
setImmediate(() => {
reject(new Error('this will cause the test to fail'));
});
});
});
test('callback passing test', (t, done) => {
// done() is the callback function. When the setImmediate() runs, it invokes
// done() with no arguments.
setImmediate(done);
});
test('callback failing test', (t, done) => {
// When the setImmediate() runs, done() is invoked with an Error object and
// the test fails.
setImmediate(() => {
done(new Error('callback failure'));
});
});
```
If any tests fail, the process exit code is set to `1`.
## Subtests
The test context's `test()` method allows subtests to be created.
It allows you to structure your tests in a hierarchical manner,
where you can create nested tests within a larger test.
This method behaves identically to the top level `test()` function.
The following example demonstrates the creation of a
top level test with two subtests.
```js
test('top level test', async (t) => {
t.test('subtest 1', (t) => {
assert.strictEqual(1, 1);
});
t.test('subtest 2', (t) => {
assert.strictEqual(2, 2);
});
});
```
> **Note:** `beforeEach` and `afterEach` hooks are triggered
> between each subtest execution.
Any subtest failures cause the parent test to fail.
## Skipping tests
Individual tests can be skipped by passing the `skip` option to the test, or by
calling the test context's `skip()` method as shown in the
following example.
```js
// The skip option is used, but no message is provided.
test('skip option', { skip: true }, (t) => {
// This code is never executed.
});
// The skip option is used, and a message is provided.
test('skip option with message', { skip: 'this is skipped' }, (t) => {
// This code is never executed.
});
test('skip() method', (t) => {
// Make sure to return here as well if the test contains additional logic.
t.skip();
});
test('skip() method with message', (t) => {
// Make sure to return here as well if the test contains additional logic.
t.skip('this is skipped');
});
```
## TODO tests
Individual tests can be marked as flaky or incomplete by passing the `todo`
option to the test, or by calling the test context's `todo()` method, as shown
in the following example. These tests represent a pending implementation or bug
that needs to be fixed. TODO tests are executed, but are not treated as test
failures, and therefore do not affect the process exit code. If a test is marked
as both TODO and skipped, the TODO option is ignored.
```js
// The todo option is used, but no message is provided.
test('todo option', { todo: true }, (t) => {
// This code is executed, but not treated as a failure.
throw new Error('this does not fail the test');
});
// The todo option is used, and a message is provided.
test('todo option with message', { todo: 'this is a todo test' }, (t) => {
// This code is executed.
});
test('todo() method', (t) => {
t.todo();
});
test('todo() method with message', (t) => {
t.todo('this is a todo test and is not treated as a failure');
throw new Error('this does not fail the test');
});
```
## `describe()` and `it()` aliases
Suites and tests can also be written using the `describe()` and `it()`
functions. [`describe()`][] is an alias for [`suite()`][], and [`it()`][] is an
alias for [`test()`][].
```js
describe('A thing', () => {
it('should work', () => {
assert.strictEqual(1, 1);
});
it('should be ok', () => {
assert.strictEqual(2, 2);
});
describe('a nested thing', () => {
it('should work', () => {
assert.strictEqual(3, 3);
});
});
});
```
`describe()` and `it()` are imported from the `node:test` module.
```mjs
import { describe, it } from 'node:test';
```
```cjs
const { describe, it } = require('node:test');
```
## `only` tests
If Node.js is started with the [`--test-only`][] command-line option, or test
isolation is disabled, it is possible to skip all tests except for a selected
subset by passing the `only` option to the tests that should run. When a test
with the `only` option is set, all subtests are also run.
If a suite has the `only` option set, all tests within the suite are run,
unless it has descendants with the `only` option set, in which case only those
tests are run.
When using [subtests][] within a `test()`/`it()`, it is required to mark
all ancestor tests with the `only` option to run only a
selected subset of tests.
The test context's `runOnly()`
method can be used to implement the same behavior at the subtest level. Tests
that are not executed are omitted from the test runner output.
```js
// Assume Node.js is run with the --test-only command-line option.
// The suite's 'only' option is set, so these tests are run.
test('this test is run', { only: true }, async (t) => {
// Within this test, all subtests are run by default.
t.test('running subtest');
// The test context can be updated to run subtests with the 'only' option.
t.runOnly(true);
t.test('this subtest is now skipped');
t.test('this subtest is run', { only: true });
// Switch the context back to execute all tests.
t.runOnly(false);
t.test('this subtest is now run');
// Explicitly do not run these tests.
t.test('skipped subtest 3', { only: false });
t.test('skipped subtest 4', { skip: true });
});
// The 'only' option is not set, so this test is skipped.
test('this test is not run', () => {
// This code is not run.
throw new Error('fail');
});
describe('a suite', () => {
// The 'only' option is set, so this test is run.
it('this test is run', { only: true }, () => {
// This code is run.
});
it('this test is not run', () => {
// This code is not run.
throw new Error('fail');
});
});
describe.only('a suite', () => {
// The 'only' option is set, so this test is run.
it('this test is run', () => {
// This code is run.
});
it('this test is run', () => {
// This code is run.
});
});
```
## Filtering tests by name
The [`--test-name-pattern`][] command-line option can be used to only run
tests whose name matches the provided pattern, and the
[`--test-skip-pattern`][] option can be used to skip tests whose name
matches the provided pattern. Test name patterns are interpreted as
JavaScript regular expressions. The `--test-name-pattern` and
`--test-skip-pattern` options can be specified multiple times in order to run
nested tests. For each test that is executed, any corresponding test hooks,
such as `beforeEach()`, are also run. Tests that are not executed are omitted
from the test runner output.
Given the following test file, starting Node.js with the
`--test-name-pattern="test [1-3]"` option would cause the test runner to execute
`test 1`, `test 2`, and `test 3`. If `test 1` did not match the test name
pattern, then its subtests would not execute, despite matching the pattern. The
same set of tests could also be executed by passing `--test-name-pattern`
multiple times (e.g. `--test-name-pattern="test 1"`,
`--test-name-pattern="test 2"`, etc.).
```js
test('test 1', async (t) => {
t.test('test 2');
t.test('test 3');
});
test('Test 4', async (t) => {
t.test('Test 5');
t.test('test 6');
});
```
Test name patterns can also be specified using regular expression literals. This
allows regular expression flags to be used. In the previous example, starting
Node.js with `--test-name-pattern="/test [4-5]/i"` (or `--test-skip-pattern="/test [4-5]/i"`)
would match `Test 4` and `Test 5` because the pattern is case-insensitive.
To match a single test with a pattern, you can prefix it with all its ancestor
test names separated by space, to ensure it is unique.
For example, given the following test file:
```js
describe('test 1', (t) => {
it('some test');
});
describe('test 2', (t) => {
it('some test');
});
```
Starting Node.js with `--test-name-pattern="test 1 some test"` would match
only `some test` in `test 1`.
Test name patterns do not change the set of files that the test runner executes.
If both `--test-name-pattern` and `--test-skip-pattern` are supplied,
tests must satisfy **both** requirements in order to be executed.
## Extraneous asynchronous activity
Once a test function finishes executing, the results are reported as quickly
as possible while maintaining the order of the tests. However, it is possible
for the test function to generate asynchronous activity that outlives the test
itself. The test runner handles this type of activity, but does not delay the
reporting of test results in order to accommodate it.
In the following example, a test completes with two `setImmediate()`
operations still outstanding. The first `setImmediate()` attempts to create a
new subtest. Because the parent test has already finished and output its
results, the new subtest is immediately marked as failed, and reported later
to the {TestsStream}.
The second `setImmediate()` creates an `uncaughtException` event.
`uncaughtException` and `unhandledRejection` events originating from a completed
test are marked as failed by the `test` module and reported as diagnostic
warnings at the top level by the {TestsStream}.
```js
test('a test that creates asynchronous activity', (t) => {
setImmediate(() => {
t.test('subtest that is created too late', (t) => {
throw new Error('error1');
});
});
setImmediate(() => {
throw new Error('error2');
});
// The test finishes after this line.
});
```
## Watch mode
<!-- YAML
added:
- v19.2.0
- v18.13.0
-->
> Stability: 1 - Experimental
The Node.js test runner supports running in watch mode by passing the `--watch` flag:
```bash
node --test --watch
```
In watch mode, the test runner will watch for changes to test files and
their dependencies. When a change is detected, the test runner will
rerun the tests affected by the change.
The test runner will continue to run until the process is terminated.
## Running tests from the command line
The Node.js test runner can be invoked from the command line by passing the
[`--test`][] flag:
```bash
node --test
```
By default, Node.js will run all files matching these patterns:
* `**/*.test.{cjs,mjs,js}`
* `**/*-test.{cjs,mjs,js}`
* `**/*_test.{cjs,mjs,js}`
* `**/test-*.{cjs,mjs,js}`
* `**/test.{cjs,mjs,js}`
* `**/test/**/*.{cjs,mjs,js}`
Unless [`--no-experimental-strip-types`][] is supplied, the following
additional patterns are also matched:
* `**/*.test.{cts,mts,ts}`
* `**/*-test.{cts,mts,ts}`
* `**/*_test.{cts,mts,ts}`
* `**/test-*.{cts,mts,ts}`
* `**/test.{cts,mts,ts}`
* `**/test/**/*.{cts,mts,ts}`
Alternatively, one or more glob patterns can be provided as the
final argument(s) to the Node.js command, as shown below.
Glob patterns follow the behavior of [`glob(7)`][].
The glob patterns should be enclosed in double quotes on the command line to
prevent shell expansion, which can reduce portability across systems.
```bash
node --test "**/*.test.js" "**/*.spec.js"
```
Matching files are executed as test files.
More information on the test file execution can be found
in the [test runner execution model][] section.
### Test runner execution model
When process-level test isolation is enabled, each matching test file is
executed in a separate child process. The maximum number of child processes
running at any time is controlled by the [`--test-concurrency`][] flag. If the
child process finishes with an exit code of 0, the test is considered passing.
Otherwise, the test is considered to be a failure. Test files must be executable
by Node.js, but are not required to use the `node:test` module internally.
Each test file is executed as if it was a regular script. That is, if the test
file itself uses `node:test` to define tests, all of those tests will be
executed within a single application thread, regardless of the value of the
`concurrency` option of [`test()`][].
When process-level test isolation is disabled, each matching test file is
imported into the test runner process. Once all test files have been loaded, the
top level tests are executed with a concurrency of one. Because the test files
are all run within the same context, it is possible for tests to interact with
each other in ways that are not possible when isolation is enabled. For example,
if a test relies on global state, it is possible for that state to be modified
by a test originating from another file.
## Collecting code coverage
> Stability: 1 - Experimental
When Node.js is started with the [`--experimental-test-coverage`][]
command-line flag, code coverage is collected and statistics are reported once
all tests have completed. If the [`NODE_V8_COVERAGE`][] environment variable is
used to specify a code coverage directory, the generated V8 coverage files are
written to that directory. Node.js core modules and files within
`node_modules/` directories are, by default, not included in the coverage report.
However, they can be explicitly included via the [`--test-coverage-include`][] flag.
By default all the matching test files are excluded from the coverage report.
Exclusions can be overridden by using the [`--test-coverage-exclude`][] flag.
If coverage is enabled, the coverage report is sent to any [test reporters][] via
the `'test:coverage'` event.
Coverage can be disabled on a series of lines using the following
comment syntax:
```js
/* node:coverage disable */
if (anAlwaysFalseCondition) {
// Code in this branch will never be executed, but the lines are ignored for
// coverage purposes. All lines following the 'disable' comment are ignored
// until a corresponding 'enable' comment is encountered.
console.log('this is never executed');
}
/* node:coverage enable */
```
Coverage can also be disabled for a specified number of lines. After the
specified number of lines, coverage will be automatically reenabled. If the
number of lines is not explicitly provided, a single line is ignored.
```js
/* node:coverage ignore next */
if (anAlwaysFalseCondition) { console.log('this is never executed'); }
/* node:coverage ignore next 3 */
if (anAlwaysFalseCondition) {
console.log('this is never executed');
}
```
### Coverage reporters
The tap and spec reporters will print a summary of the coverage statistics.
There is also an lcov reporter that will generate an lcov file which can be
used as an in depth coverage report.
```bash
node --test --experimental-test-coverage --test-reporter=lcov --test-reporter-destination=lcov.info
```
* No test results are reported by this reporter.
* This reporter should ideally be used alongside another reporter.
## Mocking
The `node:test` module supports mocking during testing via a top-level `mock`
object. The following example creates a spy on a function that adds two numbers
together. The spy is then used to assert that the function was called as
expected.
```mjs
import assert from 'node:assert';
import { mock, test } from 'node:test';
test('spies on a function', () => {
const sum = mock.fn((a, b) => {
return a + b;
});
assert.strictEqual(sum.mock.callCount(), 0);
assert.strictEqual(sum(3, 4), 7);
assert.strictEqual(sum.mock.callCount(), 1);
const call = sum.mock.calls[0];
assert.deepStrictEqual(call.arguments, [3, 4]);
assert.strictEqual(call.result, 7);
assert.strictEqual(call.error, undefined);
// Reset the globally tracked mocks.
mock.reset();
});
```
```cjs
'use strict';
const assert = require('node:assert');
const { mock, test } = require('node:test');
test('spies on a function', () => {
const sum = mock.fn((a, b) => {
return a + b;
});
assert.strictEqual(sum.mock.callCount(), 0);
assert.strictEqual(sum(3, 4), 7);
assert.strictEqual(sum.mock.callCount(), 1);
const call = sum.mock.calls[0];
assert.deepStrictEqual(call.arguments, [3, 4]);
assert.strictEqual(call.result, 7);
assert.strictEqual(call.error, undefined);
// Reset the globally tracked mocks.
mock.reset();
});
```
The same mocking functionality is also exposed on the [`TestContext`][] object
of each test. The following example creates a spy on an object method using the
API exposed on the `TestContext`. The benefit of mocking via the test context is
that the test runner will automatically restore all mocked functionality once
the test finishes.
```js
test('spies on an object method', (t) => {
const number = {
value: 5,
add(a) {
return this.value + a;
},
};
t.mock.method(number, 'add');
assert.strictEqual(number.add.mock.callCount(), 0);
assert.strictEqual(number.add(3), 8);
assert.strictEqual(number.add.mock.callCount(), 1);
const call = number.add.mock.calls[0];
assert.deepStrictEqual(call.arguments, [3]);
assert.strictEqual(call.result, 8);
assert.strictEqual(call.target, undefined);
assert.strictEqual(call.this, number);
});
```
### Timers
Mocking timers is a technique commonly used in software testing to simulate and
control the behavior of timers, such as `setInterval` and `setTimeout`,
without actually waiting for the specified time intervals.
Refer to the [`MockTimers`][] class for a full list of methods and features.
This allows developers to write more reliable and
predictable tests for time-dependent functionality.
The example below shows how to mock `setTimeout`.
Using `.enable({ apis: ['setTimeout'] });`
it will mock the `setTimeout` functions in the [node:timers](./timers.md) and
[node:timers/promises](./timers.md#timers-promises-api) modules,
as well as from the Node.js global context.
**Note:** Destructuring functions such as
`import { setTimeout } from 'node:timers'`
is currently not supported by this API.
```mjs
import assert from 'node:assert';
import { mock, test } from 'node:test';
test('mocks setTimeout to be executed synchronously without having to actually wait for it', () => {
const fn = mock.fn();
// Optionally choose what to mock
mock.timers.enable({ apis: ['setTimeout'] });
setTimeout(fn, 9999);
assert.strictEqual(fn.mock.callCount(), 0);
// Advance in time
mock.timers.tick(9999);
assert.strictEqual(fn.mock.callCount(), 1);
// Reset the globally tracked mocks.
mock.timers.reset();
// If you call reset mock instance, it will also reset timers instance
mock.reset();
});
```
```cjs
const assert = require('node:assert');
const { mock, test } = require('node:test');
test('mocks setTimeout to be executed synchronously without having to actually wait for it', () => {
const fn = mock.fn();
// Optionally choose what to mock
mock.timers.enable({ apis: ['setTimeout'] });
setTimeout(fn, 9999);
assert.strictEqual(fn.mock.callCount(), 0);
// Advance in time
mock.timers.tick(9999);
assert.strictEqual(fn.mock.callCount(), 1);
// Reset the globally tracked mocks.
mock.timers.reset();
// If you call reset mock instance, it will also reset timers instance
mock.reset();
});
```
The same mocking functionality is also exposed in the mock property on the [`TestContext`][] object
of each test. The benefit of mocking via the test context is
that the test runner will automatically restore all mocked timers
functionality once the test finishes.
```mjs
import assert from 'node:assert';
import { test } from 'node:test';
test('mocks setTimeout to be executed synchronously without having to actually wait for it', (context) => {
const fn = context.mock.fn();
// Optionally choose what to mock
context.mock.timers.enable({ apis: ['setTimeout'] });
setTimeout(fn, 9999);
assert.strictEqual(fn.mock.callCount(), 0);
// Advance in time
context.mock.timers.tick(9999);
assert.strictEqual(fn.mock.callCount(), 1);
});
```
```cjs
const assert = require('node:assert');
const { test } = require('node:test');
test('mocks setTimeout to be executed synchronously without having to actually wait for it', (context) => {
const fn = context.mock.fn();
// Optionally choose what to mock
context.mock.timers.enable({ apis: ['setTimeout'] });
setTimeout(fn, 9999);
assert.strictEqual(fn.mock.callCount(), 0);
// Advance in time
context.mock.timers.tick(9999);
assert.strictEqual(fn.mock.callCount(), 1);
});
```
### Dates
The mock timers API also allows the mocking of the `Date` object. This is a
useful feature for testing time-dependent functionality, or to simulate
internal calendar functions such as `Date.now()`.
The dates implementation is also part of the [`MockTimers`][] class. Refer to it
for a full list of methods and features.
**Note:** Dates and timers are dependent when mocked together. This means that
if you have both the `Date` and `setTimeout` mocked, advancing the time will
also advance the mocked date as they simulate a single internal clock.
The example below show how to mock the `Date` object and obtain the current
`Date.now()` value.
```mjs
import assert from 'node:assert';
import { test } from 'node:test';
test('mocks the Date object', (context) => {
// Optionally choose what to mock
context.mock.timers.enable({ apis: ['Date'] });
// If not specified, the initial date will be based on 0 in the UNIX epoch
assert.strictEqual(Date.now(), 0);
// Advance in time will also advance the date
context.mock.timers.tick(9999);
assert.strictEqual(Date.now(), 9999);
});
```
```cjs
const assert = require('node:assert');
const { test } = require('node:test');
test('mocks the Date object', (context) => {
// Optionally choose what to mock
context.mock.timers.enable({ apis: ['Date'] });
// If not specified, the initial date will be based on 0 in the UNIX epoch
assert.strictEqual(Date.now(), 0);
// Advance in time will also advance the date
context.mock.timers.tick(9999);
assert.strictEqual(Date.now(), 9999);
});
```
If there is no initial epoch set, the initial date will be based on 0 in the
Unix epoch. This is January 1st, 1970, 00:00:00 UTC. You can set an initial date
by passing a `now` property to the `.enable()` method. This value will be used
as the initial date for the mocked `Date` object. It can either be a positive
integer, or another Date object.
```mjs
import assert from 'node:assert';
import { test } from 'node:test';
test('mocks the Date object with initial time', (context) => {
// Optionally choose what to mock
context.mock.timers.enable({ apis: ['Date'], now: 100 });
assert.strictEqual(Date.now(), 100);
// Advance in time will also advance the date
context.mock.timers.tick(200);
assert.strictEqual(Date.now(), 300);
});
```
```cjs
const assert = require('node:assert');
const { test } = require('node:test');
test('mocks the Date object with initial time', (context) => {
// Optionally choose what to mock
context.mock.timers.enable({ apis: ['Date'], now: 100 });
assert.strictEqual(Date.now(), 100);
// Advance in time will also advance the date
context.mock.timers.tick(200);
assert.strictEqual(Date.now(), 300);
});
```
You can use the `.setTime()` method to manually move the mocked date to another
time. This method only accepts a positive integer.
**Note:** This method will execute any mocked timers that are in the past
from the new time.
In the below example we are setting a new time for the mocked date.
```mjs
import assert from 'node:assert';
import { test } from 'node:test';
test('sets the time of a date object', (context) => {
// Optionally choose what to mock
context.mock.timers.enable({ apis: ['Date'], now: 100 });
assert.strictEqual(Date.now(), 100);
// Advance in time will also advance the date
context.mock.timers.setTime(1000);
context.mock.timers.tick(200);
assert.strictEqual(Date.now(), 1200);
});
```
```cjs
const assert = require('node:assert');
const { test } = require('node:test');
test('sets the time of a date object', (context) => {
// Optionally choose what to mock
context.mock.timers.enable({ apis: ['Date'], now: 100 });
assert.strictEqual(Date.now(), 100);
// Advance in time will also advance the date
context.mock.timers.setTime(1000);
context.mock.timers.tick(200);
assert.strictEqual(Date.now(), 1200);
});
```
If you have any timer that's set to run in the past, it will be executed as if
the `.tick()` method has been called. This is useful if you want to test
time-dependent functionality that's already in the past.
```mjs
import assert from 'node:assert';
import { test } from 'node:test';
test('runs timers as setTime passes ticks', (context) => {
// Optionally choose what to mock
context.mock.timers.enable({ apis: ['setTimeout', 'Date'] });
const fn = context.mock.fn();
setTimeout(fn, 1000);
context.mock.timers.setTime(800);
// Timer is not executed as the time is not yet reached
assert.strictEqual(fn.mock.callCount(), 0);
assert.strictEqual(Date.now(), 800);
context.mock.timers.setTime(1200);
// Timer is executed as the time is now reached
assert.strictEqual(fn.mock.callCount(), 1);
assert.strictEqual(Date.now(), 1200);
});
```
```cjs
const assert = require('node:assert');
const { test } = require('node:test');
test('runs timers as setTime passes ticks', (context) => {
// Optionally choose what to mock
context.mock.timers.enable({ apis: ['setTimeout', 'Date'] });
const fn = context.mock.fn();
setTimeout(fn, 1000);
context.mock.timers.setTime(800);
// Timer is not executed as the time is not yet reached
assert.strictEqual(fn.mock.callCount(), 0);
assert.strictEqual(Date.now(), 800);
context.mock.timers.setTime(1200);
// Timer is executed as the time is now reached
assert.strictEqual(fn.mock.callCount(), 1);
assert.strictEqual(Date.now(), 1200);
});
```
Using `.runAll()` will execute all timers that are currently in the queue. This
will also advance the mocked date to the time of the last timer that was
executed as if the time has passed.
```mjs
import assert from 'node:assert';
import { test } from 'node:test';
test('runs timers as setTime passes ticks', (context) => {
// Optionally choose what to mock
context.mock.timers.enable({ apis: ['setTimeout', 'Date'] });
const fn = context.mock.fn();
setTimeout(fn, 1000);
setTimeout(fn, 2000);
setTimeout(fn, 3000);
context.mock.timers.runAll();
// All timers are executed as the time is now reached
assert.strictEqual(fn.mock.callCount(), 3);
assert.strictEqual(Date.now(), 3000);
});
```
```cjs
const assert = require('node:assert');
const { test } = require('node:test');
test('runs timers as setTime passes ticks', (context) => {
// Optionally choose what to mock
context.mock.timers.enable({ apis: ['setTimeout', 'Date'] });
const fn = context.mock.fn();
setTimeout(fn, 1000);
setTimeout(fn, 2000);
setTimeout(fn, 3000);
context.mock.timers.runAll();
// All timers are executed as the time is now reached
assert.strictEqual(fn.mock.callCount(), 3);
assert.strictEqual(Date.now(), 3000);
});
```
## Snapshot testing
<!-- YAML
added: v22.3.0
changes:
- version: v23.4.0
pr-url: https://github.com/nodejs/node/pull/55897
description: Snapsnot testing is no longer experimental.
-->
Snapshot tests allow arbitrary values to be serialized into string values and
compared against a set of known good values. The known good values are known as
snapshots, and are stored in a snapshot file. Snapshot files are managed by the
test runner, but are designed to be human readable to aid in debugging. Best
practice is for snapshot files to be checked into source control along with your
test files.
Snapshot files are generated by starting Node.js with the
[`--test-update-snapshots`][] command-line flag. A separate snapshot file is
generated for each test file. By default, the snapshot file has the same name
as the test file with a `.snapshot` file extension. This behavior can be
configured using the `snapshot.setResolveSnapshotPath()` function. Each
snapshot assertion corresponds to an export in the snapshot file.
An example snapshot test is shown below. The first time this test is executed,
it will fail because the corresponding snapshot file does not exist.
```js
// test.js
suite('suite of snapshot tests', () => {
test('snapshot test', (t) => {
t.assert.snapshot({ value1: 1, value2: 2 });
t.assert.snapshot(5);
});
});
```
Generate the snapshot file by running the test file with
`--test-update-snapshots`. The test should pass, and a file named
`test.js.snapshot` is created in the same directory as the test file. The
contents of the snapshot file are shown below. Each snapshot is identified by
the full name of test and a counter to differentiate between snapshots in the
same test.
```js
exports[`suite of snapshot tests > snapshot test 1`] = `
{
"value1": 1,
"value2": 2
}
`;
exports[`suite of snapshot tests > snapshot test 2`] = `
5
`;
```
Once the snapshot file is created, run the tests again without the
`--test-update-snapshots` flag. The tests should pass now.
## Test reporters
<!-- YAML
added:
- v19.6.0
- v18.15.0
changes:
- version:
- v19.9.0
- v18.17.0
pr-url: https://github.com/nodejs/node/pull/47238
description: Reporters are now exposed at `node:test/reporters`.
-->