-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtype-inference.py
539 lines (411 loc) · 15.9 KB
/
type-inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
#!/usr/bin/env python
"""
.. module:: inference
:synopsis: An implementation of the Hindley Milner type checking algorithm
based on the Scala code by Andrew Forrest, the Perl code by
Nikita Borisov and the paper "Basic Polymorphic Typechecking"
by Cardelli.
.. moduleauthor:: Robert Smallshire
"""
from __future__ import print_function
# =======================================================#
# Class definitions for the abstract syntax tree nodes
# which comprise the little language for which types
# will be inferred
class Lambda(object):
"""Lambda abstraction"""
def __init__(self, v, body):
self.v = v
self.body = body
def __str__(self):
return "(fn {v} => {body})".format(v=self.v, body=self.body)
class Identifier(object):
"""Identifier"""
def __init__(self, name):
self.name = name
def __str__(self):
return self.name
class Apply(object):
"""Function application"""
def __init__(self, fn, arg):
self.fn = fn
self.arg = arg
def __str__(self):
return "({fn} {arg})".format(fn=self.fn, arg=self.arg)
class Let(object):
"""Let binding"""
def __init__(self, v, defn, body):
self.v = v
self.defn = defn
self.body = body
def __str__(self):
return "(let {v} = {defn} in {body})".format(v=self.v, defn=self.defn, body=self.body)
class Letrec(object):
"""Letrec binding"""
def __init__(self, v, defn, body):
self.v = v
self.defn = defn
self.body = body
def __str__(self):
return "(letrec {v} = {defn} in {body})".format(v=self.v, defn=self.defn, body=self.body)
# =======================================================#
# Exception types
class InferenceError(Exception):
"""Raised if the type inference algorithm cannot infer types successfully"""
def __init__(self, message):
self.__message = message
message = property(lambda self: self.__message)
def __str__(self):
return str(self.message)
class ParseError(Exception):
"""Raised if the type environment supplied for is incomplete"""
def __init__(self, message):
self.__message = message
message = property(lambda self: self.__message)
def __str__(self):
return str(self.message)
# =======================================================#
# Types and type constructors
class TypeVariable(object):
"""A type variable standing for an arbitrary type.
All type variables have a unique id, but names are only assigned lazily,
when required.
"""
next_variable_id = 0
def __init__(self):
self.id = TypeVariable.next_variable_id
TypeVariable.next_variable_id += 1
self.instance = None
self.__name = None
next_variable_name = 'a'
@property
def name(self):
"""Names are allocated to TypeVariables lazily, so that only TypeVariables
present
"""
if self.__name is None:
self.__name = TypeVariable.next_variable_name
TypeVariable.next_variable_name = chr(ord(TypeVariable.next_variable_name) + 1)
return self.__name
def __str__(self):
if self.instance is not None:
return str(self.instance)
else:
return self.name
def __repr__(self):
return "TypeVariable(id = {0})".format(self.id)
class TypeOperator(object):
"""An n-ary type constructor which builds a new type from old"""
def __init__(self, name, types):
self.name = name
self.types = types
def __str__(self):
num_types = len(self.types)
if num_types == 0:
return self.name
elif num_types == 2:
return "({0} {1} {2})".format(str(self.types[0]), self.name, str(self.types[1]))
else:
return "{0} {1}" .format(self.name, ' '.join(self.types))
class Function(TypeOperator):
"""A binary type constructor which builds function types"""
def __init__(self, from_type, to_type):
super(Function, self).__init__("->", [from_type, to_type])
# Basic types are constructed with a nullary type constructor
Integer = TypeOperator("int", []) # Basic integer
Bool = TypeOperator("bool", []) # Basic bool
# =======================================================#
# Type inference machinery
def analyse(node, env, non_generic=None):
"""Computes the type of the expression given by node.
The type of the node is computed in the context of the context of the
supplied type environment env. Data types can be introduced into the
language simply by having a predefined set of identifiers in the initial
environment. environment; this way there is no need to change the syntax or, more
importantly, the type-checking program when extending the language.
Args:
node: The root of the abstract syntax tree.
env: The type environment is a mapping of expression identifier names
to type assignments.
to type assignments.
non_generic: A set of non-generic variables, or None
Returns:
The computed type of the expression.
Raises:
InferenceError: The type of the expression could not be inferred, for example
if it is not possible to unify two types such as Integer and Bool
ParseError: The abstract syntax tree rooted at node could not be parsed
"""
if non_generic is None:
non_generic = set()
if isinstance(node, Identifier):
return get_type(node.name, env, non_generic)
elif isinstance(node, Apply):
fun_type = analyse(node.fn, env, non_generic)
arg_type = analyse(node.arg, env, non_generic)
result_type = TypeVariable()
unify(Function(arg_type, result_type), fun_type)
return result_type
elif isinstance(node, Lambda):
arg_type = TypeVariable()
new_env = env.copy()
new_env[node.v] = arg_type
new_non_generic = non_generic.copy()
new_non_generic.add(arg_type)
result_type = analyse(node.body, new_env, new_non_generic)
return Function(arg_type, result_type)
elif isinstance(node, Let):
defn_type = analyse(node.defn, env, non_generic)
new_env = env.copy()
new_env[node.v] = defn_type
return analyse(node.body, new_env, non_generic)
elif isinstance(node, Letrec):
new_type = TypeVariable()
new_env = env.copy()
new_env[node.v] = new_type
new_non_generic = non_generic.copy()
new_non_generic.add(new_type)
defn_type = analyse(node.defn, new_env, new_non_generic)
unify(new_type, defn_type)
return analyse(node.body, new_env, non_generic)
assert 0, "Unhandled syntax node {0}".format(type(node))
def get_type(name, env, non_generic):
"""Get the type of identifier name from the type environment env.
Args:
name: The identifier name
env: The type environment mapping from identifier names to types
non_generic: A set of non-generic TypeVariables
Raises:
ParseError: Raised if name is an undefined symbol in the type
environment.
"""
if name in env:
return fresh(env[name], non_generic)
elif is_integer_literal(name):
return Integer
else:
raise ParseError("Undefined symbol {0}".format(name))
def fresh(t, non_generic):
"""Makes a copy of a type expression.
The type t is copied. The the generic variables are duplicated and the
non_generic variables are shared.
Args:
t: A type to be copied.
non_generic: A set of non-generic TypeVariables
"""
mappings = {} # A mapping of TypeVariables to TypeVariables
def freshrec(tp):
p = prune(tp)
if isinstance(p, TypeVariable):
if is_generic(p, non_generic):
if p not in mappings:
mappings[p] = TypeVariable()
return mappings[p]
else:
return p
elif isinstance(p, TypeOperator):
return TypeOperator(p.name, [freshrec(x) for x in p.types])
return freshrec(t)
def unify(t1, t2):
"""Unify the two types t1 and t2.
Makes the types t1 and t2 the same.
Args:
t1: The first type to be made equivalent
t2: The second type to be be equivalent
Returns:
None
Raises:
InferenceError: Raised if the types cannot be unified.
"""
a = prune(t1)
b = prune(t2)
if isinstance(a, TypeVariable):
if a != b:
if occurs_in_type(a, b):
raise InferenceError("recursive unification")
a.instance = b
elif isinstance(a, TypeOperator) and isinstance(b, TypeVariable):
unify(b, a)
elif isinstance(a, TypeOperator) and isinstance(b, TypeOperator):
if a.name != b.name or len(a.types) != len(b.types):
raise InferenceError("Type mismatch: {0} != {1}".format(str(a), str(b)))
for p, q in zip(a.types, b.types):
unify(p, q)
else:
assert 0, "Not unified"
def prune(t):
"""Returns the currently defining instance of t.
As a side effect, collapses the list of type instances. The function Prune
is used whenever a type expression has to be inspected: it will always
return a type expression which is either an uninstantiated type variable or
a type operator; i.e. it will skip instantiated variables, and will
actually prune them from expressions to remove long chains of instantiated
variables.
Args:
t: The type to be pruned
Returns:
An uninstantiated TypeVariable or a TypeOperator
"""
if isinstance(t, TypeVariable):
if t.instance is not None:
t.instance = prune(t.instance)
return t.instance
return t
def is_generic(v, non_generic):
"""Checks whether a given variable occurs in a list of non-generic variables
Note that a variables in such a list may be instantiated to a type term,
in which case the variables contained in the type term are considered
non-generic.
Note: Must be called with v pre-pruned
Args:
v: The TypeVariable to be tested for genericity
non_generic: A set of non-generic TypeVariables
Returns:
True if v is a generic variable, otherwise False
"""
return not occurs_in(v, non_generic)
def occurs_in_type(v, type2):
"""Checks whether a type variable occurs in a type expression.
Note: Must be called with v pre-pruned
Args:
v: The TypeVariable to be tested for
type2: The type in which to search
Returns:
True if v occurs in type2, otherwise False
"""
pruned_type2 = prune(type2)
if pruned_type2 == v:
return True
elif isinstance(pruned_type2, TypeOperator):
return occurs_in(v, pruned_type2.types)
return False
def occurs_in(t, types):
"""Checks whether a types variable occurs in any other types.
Args:
t: The TypeVariable to be tested for
types: The sequence of types in which to search
Returns:
True if t occurs in any of types, otherwise False
"""
return any(occurs_in_type(t, t2) for t2 in types)
def is_integer_literal(name):
"""Checks whether name is an integer literal string.
Args:
name: The identifier to check
Returns:
True if name is an integer literal, otherwise False
"""
result = True
try:
int(name)
except ValueError:
result = False
return result
# ==================================================================#
# Example code to exercise the above
def try_exp(env, node):
"""Try to evaluate a type printing the result or reporting errors.
Args:
env: The type environment in which to evaluate the expression.
node: The root node of the abstract syntax tree of the expression.
Returns:
None
"""
try:
t = analyse(node, env)
print(str(node) + " : ", end=' ')
print(str(t))
except (ParseError, InferenceError) as e:
print(str(node) + " : ", end=' ')
print(e)
import time
def main():
"""The main example program.
Sets up some predefined types using the type constructors TypeVariable,
TypeOperator and Function. Creates a list of example expressions to be
evaluated. Evaluates the expressions, printing the type or errors arising
from each.
Returns:
None
"""
var1 = TypeVariable()
var2 = TypeVariable()
pair_type = TypeOperator("*", (var1, var2))
var3 = TypeVariable()
my_env = {"pair": Function(var1, Function(var2, pair_type)),
"true": Bool,
"cond": Function(Bool, Function(var3, Function(var3, var3))),
"zero": Function(Integer, Bool),
"pred": Function(Integer, Integer),
"times": Function(Integer, Function(Integer, Integer)),
"factorial": Function(Integer, Integer)}
pair = Apply(Apply(Identifier("pair"),
Apply(Identifier("f"),
Identifier("4"))),
Apply(Identifier("f"),
Identifier("true")))
fact_test = Apply(Identifier("factorial"), Identifier("5"))
examples = [
# factorial
Letrec("factorial", # letrec factorial =
Lambda("n", # fn n =>
Apply(
Apply( # cond (zero n) 1
Apply(Identifier("cond"), # cond (zero n)
Apply(Identifier("zero"), Identifier("n"))),
Identifier("1")),
Apply( # times n
Apply(Identifier("times"), Identifier("n")),
Apply(Identifier("factorial"),
Apply(Identifier("pred"), Identifier("n")))
)
)
), # in
Apply(Identifier("factorial"), Identifier("5"))
),
# Should fail:
# fn x => (pair(x(3) (x(true)))
Lambda("x",
Apply(
Apply(Identifier("pair"),
Apply(Identifier("x"), Identifier("3"))),
Apply(Identifier("x"), Identifier("true")))),
# pair(f(3), f(true))
Apply(
Apply(Identifier("pair"), Apply(Identifier("f"), Identifier("4"))),
Apply(Identifier("f"), Identifier("true"))),
# let f = (fn x => x) in ((pair (f 4)) (f true))
Let("f", Lambda("x", Identifier("x")), pair),
# fn f => f f (fail)
Lambda("f", Apply(Identifier("f"), Identifier("f"))),
# let g = fn f => 5 in g g
Let("g",
Lambda("f", Identifier("5")),
Apply(Identifier("g"), Identifier("g"))),
# example that demonstrates generic and non-generic variables:
# fn g => let f = fn x => g in pair (f 3, f true)
Lambda("g",
Let("f",
Lambda("x", Identifier("g")),
Apply(
Apply(Identifier("pair"),
Apply(Identifier("f"), Identifier("3"))
),
Apply(Identifier("f"), Identifier("true"))))),
# Function composition
# fn f (fn g (fn arg (f g arg)))
Lambda("f", Lambda("g", Lambda("arg", Apply(Identifier("g"), Apply(Identifier("f"), Identifier("arg"))))))
]
#for example in examples:
# try_exp(my_env, example)
#try_exp(my_env, examples[0])
total = 0.0
iterations = 1000000
for i in range(0, iterations):
start = time.time()
t = analyse(examples[0], my_env)
end = time.time()
total += end - start
print("Iterations: {} Total time: {} ns".format(iterations, total * 1000000))
if __name__ == '__main__':
main()