-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathshapegraphs.py
185 lines (160 loc) · 5.69 KB
/
shapegraphs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
""" Generate shape dependency graphs for n-cube, n-tetraeder, n-octaeder """
from __future__ import division, print_function
import argparse
import itertools
def itemname(n):
""" Return nice name for the different parts of a shape """
names = ["point", "line", "face", "shape"]
if n<len(names):
return names[n]
return "_%d_" % n
class graphbase:
"""
Baseclass for the graph generators.
each subclass must implement the following methods:
* makeparts(m)
- generator which yields the part parameters for parts of dimension `m`
points have m=0, lines have m=1, faces have m=2, etc.
* partname(m, part)
- generate a sensible name for the part.
* containspart(part, subpart)
- returns true when the m dimensional part contains the m-1
dimensional subpart
* name
- a class property
"""
def __init__(self, n):
""" init the shape with the dimension of the space """
self.n = n
def writedot(self):
print("graph %s {" % self.name)
print("{ node[shape=plaintext];")
print("%s;" % "--".join(itemname(x)+"s" for x in range(self.n+1)))
print("}")
print("node[shape=box];")
# first put points, lines, etc in their respective rank
for m in range(self.n+1):
print("{ rank=same; %s;" % (itemname(m)+"s"))
# emit points, lines, ...
for part in self.makeparts(m):
print("%s;" % self.partname(m, part), end="")
print("}")
# now emit dependencies
for m in range(0, self.n+1):
for part in self.makeparts(m+1):
deps = []
for subpart in self.makeparts(m):
if self.containspart(part, subpart):
deps.append(self.partname(m, subpart))
print("%s -- %s;" % ( self.partname(m+1, part), ",".join(deps)))
print("}")
class ncubegraph(graphbase):
name = "NCube"
# 2^(n-m) * binom(n, m) m-dimensional parts in n-dimensional cube
def makeparts(self, m):
# return m dimensional sub part of n-cube
# m==0 -> point, m==1 -> line, ...
for bits in itertools.combinations(range(self.n), m):
mask = sum(1<<x for x in bits) ^ (2**self.n-1)
for i in range(2**(self.n-m)):
value = 0
for j in range(self.n):
if mask&(1<<j):
if i&1:
value |= 1<<j
i >>= 1
yield mask, value
def partname(self, m, part):
mask, value = part
suffix = ""
for i in range(self.n):
if mask&1:
suffix += str(value&1)
else:
suffix += 'x'
mask >>= 1
value >>= 1
return itemname(m)+suffix[::-1]
def containspart(self, part, subpart):
mask,value = part
submask,subvalue = subpart
return submask&mask == mask and subvalue&mask == value
class ntetragraph(graphbase):
name = "NTetra"
# binom(n+1, m+1) m-dimensional parts in n-dimensional tetraeder
def makeparts(self, m):
# return m dimensional sub part of n-tetra
# m==0 -> point, m==1 -> line, ...
for part in itertools.combinations(range(self.n+1), m+1):
yield sum(1<<x for x in part)
def partname(self, m, part):
def xxx(x):
if x<26:
return chr(65+x)
x -= 26
if x<26:
return chr(97+x)
x -= 26
if x<10:
return chr(48+x)
x -= 10
return "?"
suffix = ""
for i in range(self.n+1):
if part&(1<<i):
suffix += xxx(i)
return itemname(m)+suffix
def containspart(self, part, subpart):
return part&subpart==subpart
class noctagraph(graphbase):
name = "NOcta"
# 2^(m+1) * binom(n, m+1) m-dimensional parts in n-dimensional octaeder
def makeparts(self, m):
# return m dimensional sub part of n-octa
# m==0 -> point, m==1 -> line, ...
if m==self.n:
yield 0, 0
return
for bits in itertools.combinations(range(self.n), m+1):
for i in range(2**(m+1)):
value = 0
mask = 0
for bit in bits:
mask |= 1<<bit
if i&1:
value |= 1<<bit
i>>=1
yield mask, value
def partname(self, m, part):
mask, value = part
def xxx(x, b):
if x<26:
if b:
return chr(65+x)
else:
return chr(97+x)
x -= 26
return "?"
suffix = ""
for i in range(self.n):
if mask&(1<<i):
suffix += xxx(i, value&(1<<i))
return itemname(m)+suffix
def containspart(self, part, subpart):
mask,value = part
submask,subvalue = subpart
return mask==value==0 or (submask&mask == submask and value&submask == subvalue)
parser = argparse.ArgumentParser(description='Draw shape dependency graphs: which face contains on which lines, etc.')
parser.add_argument('--dim', type=int)
parser.add_argument('--cube', action='store_true')
parser.add_argument('--tetra', action='store_true')
parser.add_argument('--octa', action='store_true')
args = parser.parse_args()
if args.dim is None:
args.dim = 3
if args.cube:
ncubegraph(args.dim).writedot()
elif args.tetra:
ntetragraph(args.dim).writedot()
elif args.octa:
noctagraph(args.dim).writedot()