-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprom.c
executable file
·794 lines (682 loc) · 15.1 KB
/
prom.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
/**
* \file PROM dancer
*
* Read up to 40 pin DIP PROMs using a Teensy++ 2.0
*/
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <avr/interrupt.h>
#include <stdint.h>
#include <string.h>
#include <util/delay.h>
#include "usb_serial.h"
#include "xmodem.h"
#include "bits.h"
#include "chips.h"
void send_str(const char *s);
void send_mem_str(const char *s);
uint8_t recv_str(char *buf, uint8_t size);
void parse_and_execute_command(const char *buf, uint8_t num);
static uint8_t
hexdigit(
uint8_t x
)
{
x &= 0xF;
if (x < 0xA)
return x + '0' - 0x0;
else
return x + 'A' - 0xA;
}
static uint8_t
printable(
uint8_t x
)
{
if ('A' <= x && x <= 'Z')
return 1;
if ('a' <= x && x <= 'z')
return 1;
if ('0' <= x && x <= '9')
return 1;
if (x == ' ')
return 1;
return 0;
}
/** Total number of mapped pins.
* This is unlikely to change without a significant hardware redesign.
*/
#define ZIF_PINS 40
/** Mapping of AVR IO ports to the ZIF socket pins */
static const uint8_t ports[ZIF_PINS+1] = {
[ 1] = 0xB6,
[ 2] = 0xB5,
[ 3] = 0xB4,
[ 4] = 0xB3,
[ 5] = 0xB2,
[ 6] = 0xB1,
[ 7] = 0xB0,
[ 8] = 0xE7,
[ 9] = 0xE6,
[10] = 0xA2,
[11] = 0xA1,
[12] = 0xF0,
[13] = 0xF1,
[14] = 0xF2,
[15] = 0xF3,
[16] = 0xF4,
[17] = 0xF5,
[18] = 0xF6,
[19] = 0xF7,
[20] = 0xA3,
[21] = 0xA7,
[22] = 0xC7,
[23] = 0xC6,
[24] = 0xC5,
[25] = 0xC4,
[26] = 0xC3,
[27] = 0xC2,
[28] = 0xC1,
[29] = 0xC0,
[30] = 0xE1,
[31] = 0xE0,
[32] = 0xD7,
[33] = 0xD6,
[34] = 0xD5,
[35] = 0xD4,
[36] = 0xD3,
[37] = 0xD2,
[38] = 0xD1,
[39] = 0xD0,
[40] = 0xB7,
};
/** Select one of the chips */
static const prom_t * prom = &proms[0];
/** Translate PROM pin numbers into ZIF pin numbers */
static inline uint8_t
prom_pin(
const uint8_t pin
)
{
if (pin <= prom->pins / 2)
return ports[pin];
else
return ports[pin + ZIF_PINS - prom->pins];
}
/** Generate a 0.5 MHz clock on the XTAL pin to drive the chip
* if it does not have a built in oscillator enabled.
*/
static void
isp_clock(
uint8_t cycles
)
{
const uint8_t xtal = prom_pin(prom->addr_pins[ISP_XTAL]);
for (uint8_t i = 0 ; i < cycles ; i++)
{
out(xtal, 1);
_delay_us(1);
out(xtal, 0);
_delay_us(1);
}
}
/** Send a byte to an AVR ISP enabled chip and read a result.
* Since the AVR ISP is bidirectional, every byte out is also a byte in.
*/
static uint8_t
isp_write(
uint8_t byte
)
{
const uint8_t mosi = prom_pin(prom->addr_pins[ISP_MOSI]);
const uint8_t sck = prom_pin(prom->addr_pins[ISP_SCK]);
const uint8_t miso = prom_pin(prom->data_pins[ISP_MISO]);
uint8_t rc = 0;
for (uint8_t i = 0 ; i < 8 ; i++, byte <<= 1)
{
out(mosi, (byte & 0x80) ? 1 : 0);
isp_clock(4);
out(sck, 1);
isp_clock(4);
rc = (rc << 1) | (in(miso) ? 1 : 0);
out(sck, 0);
}
return rc;
}
/** Enter programming mode for an ISP chip.
* \return 1 on success, 0 on failure.
*/
static int
isp_setup(void)
{
// Pulse the RESET pin, while holding SCK low.
const uint8_t sck = prom_pin(prom->addr_pins[ISP_SCK]);
const uint8_t reset = prom_pin(prom->addr_pins[ISP_RESET]);
const uint8_t miso = prom_pin(prom->data_pins[ISP_MISO]);
out(sck, 0);
out(reset, 1);
isp_clock(4);
out(reset, 0);
isp_clock(255);
// Now delay at least 20 ms
_delay_ms(20);
uint8_t rc1, rc2, rc3, rc4;
// Enter programming mode; enable pull up on the MISO pin
out(miso, 1);
rc1 = isp_write(0xAC);
rc2 = isp_write(0x53);
rc3 = isp_write(0x12);
rc4 = isp_write(0x34);
// Disable pull up
out(miso, 0);
if (rc3 == 0x53)
return 1;
// Now show what we read
uint8_t buf[10];
buf[0] = hexdigit(rc1 >> 4);
buf[1] = hexdigit(rc1 >> 0);
buf[2] = hexdigit(rc2 >> 4);
buf[3] = hexdigit(rc2 >> 0);
buf[4] = hexdigit(rc3 >> 4);
buf[5] = hexdigit(rc3 >> 0);
buf[6] = hexdigit(rc4 >> 4);
buf[7] = hexdigit(rc4 >> 0);
buf[8] = '\r';
buf[9] = '\n';
usb_serial_write(buf, sizeof(buf));
return 0;
}
/** Read a byte using the AVRISP, instead of the normal PROM format.
*/
static uint8_t
isp_read(
uint32_t addr
)
{
uint8_t h = (addr >> 12) & 0x01;
uint8_t a = (addr >> 8) & 0x0F;
uint8_t b = (addr >> 0) & 0xFF;
isp_write(0x20 | (h ? 0x8 : 0));
isp_write(a);
isp_write(b);
return isp_write(0);
}
/** Configure all of the IO pins for the new PROM type */
static void
prom_setup(void)
{
// Configure all of the address pins as outputs,
// pulled low for now
for (uint8_t i = 0 ; i < array_count(prom->addr_pins) ; i++)
{
uint8_t pin = prom_pin(prom->addr_pins[i]);
if (pin == 0)
continue;
out(pin, 0);
ddr(pin, 1);
}
// Configure all of the data pins as inputs,
// Enable pullups if specified.
for (uint8_t i = 0 ; i < array_count(prom->data_pins) ; i++)
{
uint8_t pin = prom_pin(prom->data_pins[i]);
if (pin == 0)
continue;
if ((prom->options & OPTIONS_PULLUPS) != 0) {
out(pin, 1);
} else {
out(pin, 0);
}
ddr(pin, 0);
}
// Configure all of the hi and low pins as outputs.
// Do the low pins first to bring them to ground potential,
// then the high pins.
for (uint8_t i = 0 ; i < array_count(prom->lo_pins) ; i++)
{
uint8_t pin = prom_pin(prom->lo_pins[i]);
if (pin == 0)
continue;
out(pin, 0);
ddr(pin, 1);
}
for (uint8_t i = 0 ; i < array_count(prom->hi_pins) ; i++)
{
uint8_t pin = prom_pin(prom->hi_pins[i]);
if (pin == 0)
continue;
out(pin, 1);
ddr(pin, 1);
}
// Let things stabilize for a little while
_delay_ms(250);
// If this is an AVR ISP chip, try to go into programming mode
if (prom->data_width == 0)
isp_setup();
}
/** Switch all of the ZIF pins back to tri-state to make it safe.
* Doesn't matter what PROM is inserted.
*/
static void
prom_tristate(void)
{
for (uint8_t i = 1 ; i <= ZIF_PINS ; i++)
{
ddr(ports[i], 0);
out(ports[i], 0);
}
}
/** Select a 32-bit address for the current PROM */
static void
prom_set_address(
uint32_t addr
)
{
for (uint8_t i = 0 ; i < prom->addr_width ; i++)
{
out(prom_pin(prom->addr_pins[i]), addr & 1);
addr >>= 1;
}
}
static uint8_t
_prom_read(void)
{
uint8_t b = 0;
for (uint8_t i = 0 ; i < prom->data_width ; i++)
{
uint8_t bit = in(prom_pin(prom->data_pins[i])) ? 0x80 : 0;
b = (b >> 1) | bit;
}
return b;
}
/** Read a byte from the PROM at the specified address..
* \todo Update this to handle wider than 8-bit PROM chips.
*/
static uint8_t
prom_read(
uint32_t addr
)
{
if (prom->data_width == 0)
return isp_read(addr);
uint8_t latch = (prom->options & OPTIONS_LATCH) != 0;
uint8_t latch_pin = prom_pin(prom->lo_pins[LATCH_PIN]);
if (latch) {
out(latch_pin,1);
}
prom_set_address(addr);
if (latch) {
out(latch_pin,0);
}
for(uint8_t i = 0 ; i < 255; i++)
{
asm("nop");
asm("nop");
asm("nop");
asm("nop");
}
uint8_t old_r = _prom_read();
// Try reading a few times to be sure,
// or until the values converge
for (uint8_t i = 0 ; i < 8 ; i++)
{
uint8_t r = _prom_read();
if (r == old_r)
break;
old_r = r;
}
return old_r;
}
static uint8_t
usb_serial_getchar_echo(void)
{
while (1)
{
while (usb_serial_available() == 0)
continue;
uint16_t c = usb_serial_getchar();
if (c == -1)
continue;
usb_serial_putchar(c);
return c;
}
}
static uint8_t
hexdigit_parse(
uint8_t c
)
{
if ('0' <= c && c <= '9')
return c - '0';
if ('A' <= c && c <= 'F')
return c - 'A' + 0xA;
if ('a' <= c && c <= 'f')
return c - 'a' + 0xA;
return 0xFF;
}
static void
hex32(
uint8_t * buf,
uint32_t addr
)
{
buf[7] = hexdigit(addr & 0xF); addr >>= 4;
buf[6] = hexdigit(addr & 0xF); addr >>= 4;
buf[5] = hexdigit(addr & 0xF); addr >>= 4;
buf[4] = hexdigit(addr & 0xF); addr >>= 4;
buf[3] = hexdigit(addr & 0xF); addr >>= 4;
buf[2] = hexdigit(addr & 0xF); addr >>= 4;
buf[1] = hexdigit(addr & 0xF); addr >>= 4;
buf[0] = hexdigit(addr & 0xF); addr >>= 4;
}
static void
hexdump(
uint32_t addr
)
{
uint8_t buf[80];
hex32(buf, addr);
for (int i = 0 ; i < 16 ; i++)
{
uint8_t w = prom_read(addr++);
uint8_t x = 8 + i * 3;
buf[x+0] = ' ';
buf[x+1] = hexdigit(w >> 4);
buf[x+2] = hexdigit(w >> 0);
buf[8 + 16*3 + i + 2] = printable(w) ? w : '.';
}
buf[8 + 16 * 3 + 0] = ' ';
buf[8 + 16 * 3 + 1] = ' ';
buf[8 + 16 * 3 + 18] = '\r';
buf[8 + 16 * 3 + 19] = '\n';
usb_serial_write(buf, 8 + 16 * 3 + 20);
}
/** Read an address from the serial port, then read that from the PROM */
static void
read_addr(char* buffer)
{
uint32_t addr = 0;
uint8_t buf_idx = 0;
while (1)
{
uint8_t c = buffer[buf_idx++];
if (c == '\0')
break;
uint8_t n = hexdigit_parse(c);
if (n == 0xFF)
goto error;
addr = (addr << 4) | n;
}
send_str(PSTR("\r\n"));
prom_setup();
for (uint8_t line = 0 ; line < 4 ; line++)
{
hexdump(addr);
addr += 16;
}
return;
error:
send_str(PSTR("?\r\n"));
}
/** Send a single prom name to the serial port */
static void
prom_list_send(
int mode,
const prom_t * const prom,
int selected
)
{
uint8_t buf[32];
uint8_t off = 0;
if (selected)
{
buf[off++] = '*';
buf[off++] = '*';
buf[off++] = '*';
buf[off++] = ' ';
}
if (mode >= 16) {
buf[off++] = hexdigit(mode / 16);
}
buf[off++] = hexdigit(mode % 16);
buf[off++] = ' ';
memcpy(buf+off, prom->name, sizeof(prom->name));
off += sizeof(prom->name);
buf[off++] = '\r';
buf[off++] = '\n';
usb_serial_write(buf, off);
}
/** List all of the PROM models supported */
static void
prom_list(void)
{
for (int i = 0 ; i < proms_count ; i++)
{
const prom_t * const p = &proms[i];
prom_list_send(i, p, p == prom );
}
}
static void
prom_mode(char* buffer)
{
for (int i = 0; i < proms_count; i++) {
const char* a = proms[i].name;
const char* b = buffer;
char match = 1;
while (*a != '\0' && *b != '\0') {
if (*a != *b) { match = 0; break; }
a++; b++;
}
if (match) {
prom = &proms[i];
prom_list_send(i, prom, 1);
return;
}
}
send_str(PSTR("- No such chip\r\n"));
}
/**
* Scan the current chip against the EPROM definition given.
* A "successful" scan should yield:
* - Different data on each data pin
* - Consistent data across multiple scans
* - A check on high memory to ensure to disambiguate different
* memory grades on the same/similar pinouts
* Return 1 on success, 0 otherwise.
*/
static uint8_t scan(const prom_t* use_prom) {
prom = use_prom;
prom_setup();
// scan first 256 bytes for varying data
uint8_t zeros = 0;
uint8_t ones = 0;
uint8_t block[16];
for (uint32_t addr = 0; addr < 256; addr += 16) {
for (uint8_t i = 0; i < 16; i++) {
block[i] = prom_read(addr+i);
zeros |= ~block[i];
ones |= block[i];
}
// reread and confirm
for (uint8_t i = 0; i < 16; i++) {
if (block[i] != prom_read(addr+i)) {
return 0;
}
}
}
// ensure that we're not just getting the same bits again and again
if (ones != 0xff || zeros != 0xff) { return 0; }
// check top half of memory. If first 256 bytes mirrors low memory
// or is the same byte, consider it a failure.
const uint32_t top_half_addr = (((uint32_t) 1) << prom->addr_width) >> 1;
uint8_t single_byte = prom_read(top_half_addr);
uint8_t same_byte_check = 1;
uint8_t same_data_check = 1;
for (uint8_t i = 0; i < 256; i++) {
uint8_t low = prom_read(i);
uint8_t high = prom_read(top_half_addr+i);
if (high != single_byte) { same_byte_check = 0; }
if (low != high) { same_data_check = 0; }
}
if (same_data_check || same_byte_check) { return 0; }
return 1;
}
/**
* Automatically scan all known EPROM types and attempt to construct a list of candidates.
*/
static void autoscan(void) {
prom_tristate();
for (int i = 0; i < proms_count; i++) {
if (scan(proms+i)) {
prom_list_send(i, prom, 1);
}
prom_tristate();
}
}
static xmodem_block_t xmodem_block;
/** Send the entire PROM memory via xmodem */
static void
prom_send(void)
{
if (xmodem_init(&xmodem_block) < 0)
return;
// Ending address
const uint32_t end_addr = (((uint32_t) 1) << prom->addr_width) - 1;
// Bring the pins up to level
prom_setup();
// Start sending!
uint32_t addr = 0;
while (1)
{
for (uint8_t off = 0 ; off < sizeof(xmodem_block.data) ; off++)
xmodem_block.data[off] = prom_read(addr++);
if (xmodem_send(&xmodem_block) < 0)
return;
// If we have wrapped the address, we are done
if (addr >= end_addr)
break;
}
xmodem_fini(&xmodem_block);
}
int main(void)
{
// set for 16 MHz clock
#define CPU_PRESCALE(n) (CLKPR = 0x80, CLKPR = (n))
CPU_PRESCALE(0);
// Disable the ADC
ADMUX = 0;
// initialize the USB, and then wait for the host
// to set configuration. If the Teensy is powered
// without a PC connected to the USB port, this
// will wait forever.
usb_init();
while (!usb_configured()) /* wait */ ;
_delay_ms(1000);
// wait for the user to run their terminal emulator program
// which sets DTR to indicate it is ready to receive.
while (!(usb_serial_get_control() & USB_SERIAL_DTR))
continue;
// discard anything that was received prior. Sometimes the
// operating system or other software will send a modem
// "AT command", which can still be buffered.
usb_serial_flush_input();
#if 0
uint16_t addr = 0;
char line[64];
uint8_t off = 0;
send_str(PSTR("Looking for strings\r\n"));
while (1)
{
addr++;
if (addr == 0)
send_str(PSTR("wrap\r\n"));
uint8_t byte = read_byte(addr);
if (byte == 0)
continue;
if (off == 0)
{
line[off++] = hexdigit(addr >> 12);
line[off++] = hexdigit(addr >> 8);
line[off++] = hexdigit(addr >> 4);
line[off++] = hexdigit(addr >> 0);
line[off++] = '=';
}
if (printable(byte))
{
line[off++] = byte;
if (off < sizeof(line) - 2)
continue;
} else {
line[off++] = hexdigit(byte >> 4);
line[off++] = hexdigit(byte >> 0);
}
line[off++] = '\r';
line[off++] = '\n';
usb_serial_write(line, off);
off = 0;
}
#else
#define MAX_CMD 64
char buffer[MAX_CMD];
uint8_t buf_idx = 0;
while (1)
{
// always put the PROM into tristate so that it is safe
// to swap the chips in between readings, and
prom_tristate();
send_str(PSTR("> "));
buf_idx = 0;
buffer[buf_idx] = 0;
while (1)
{
// read in a line, processing on a newline, return, or
// xmodem transfer nak
char c = usb_serial_getchar_echo();
if (c == XMODEM_NAK) { buffer[0] = XMODEM_NAK; buf_idx=1; break; }
if (c == '\n') { send_str(PSTR("\r")); break; }
if (c == '\r') { send_str(PSTR("\n")); break; }
if (buf_idx < (MAX_CMD-1)) buffer[buf_idx++] = c;
}
buffer[buf_idx] = 0;
// process command
switch(buffer[0]) {
case XMODEM_NAK: prom_send(); break;
case 'r': read_addr(buffer+1); break;
case 'l': prom_list(); break;
case 'm': prom_mode(buffer+1); break;
case 'i': isp_read(0); break;
case 's': autoscan(); break;
case '\n': break;
case '\r': break;
default:
send_str(PSTR(
"r000000 Read a hex word from address\r\n"
"l List chip modes\r\n"
"mTYPE Select chip TYPE\r\n"
"s Autoscan for chip type (POTENTIALLY DANGEROUS)\r\n"
));
break;
}
}
#endif
}
// Send a string to the USB serial port. The string must be in
// flash memory, using PSTR
//
void send_str(const char *s)
{
char c;
while (1) {
c = pgm_read_byte(s++);
if (!c) break;
usb_serial_putchar(c);
}
}
void send_mem_str(const char *s)
{
while (1) {
char c = *(s++);
if (!c) break;
usb_serial_putchar(c);
}
}