-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathtest.py
34 lines (29 loc) · 1000 Bytes
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from model import ActorCritic
import torch
import gym
from PIL import Image
def test(n_episodes=5, name='LunarLander_TWO.pth'):
env = gym.make('LunarLander-v2')
policy = ActorCritic()
policy.load_state_dict(torch.load('./preTrained/{}'.format(name)))
render = True
save_gif = False
for i_episode in range(1, n_episodes+1):
state = env.reset()
running_reward = 0
for t in range(10000):
action = policy(state)
state, reward, done, _ = env.step(action)
running_reward += reward
if render:
env.render()
if save_gif:
img = env.render(mode = 'rgb_array')
img = Image.fromarray(img)
img.save('./gif/{}.jpg'.format(t))
if done:
break
print('Episode {}\tReward: {}'.format(i_episode, running_reward))
env.close()
if __name__ == '__main__':
test()