-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulations.py
135 lines (110 loc) · 7.75 KB
/
simulations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import numpy as np
import pandas as pd
from cuts import Cuts
from montecarlo import MonteCarloRunner, MontecarloCharacterization
from non_normal import NonGaussianCharacterization, NonGaussianParameters
def salarySimulationRun(totalIterations, loanLength, remainingMonthsForActualCut, monthsPerCut, initialCut, historicSeries, possibleExtensionInMonths, distrib='norm'):
cuts = Cuts()
extendedLoanLength = loanLength + possibleExtensionInMonths
numberOfPeriods = int( np.ceil( (extendedLoanLength-remainingMonthsForActualCut)/monthsPerCut) )
parameters = MontecarloCharacterization(series=historicSeries, cuts=Cuts.argentinaCuts,
period=12.0 / 252).getYieldsMeanAndSigma()
if distrib != 'norm':
calculators = NonGaussianCharacterization(series=historicSeries, cuts=Cuts.argentinaCuts, gaussianParameters=parameters).getCalculators(distrib)
for cutName, parameter in parameters.items():
parameters[cutName] = NonGaussianParameters(*parameter,calculators[cutName])
results = np.empty((totalIterations, int(extendedLoanLength + 1)))
initialPeriod = (initialCut, remainingMonthsForActualCut)
initialValue = 100
for k in range(totalIterations):
runValues = [initialValue]
iterationPeriods=generatePeriodVector(cuts, initialPeriod, extendedLoanLength, monthsPerCut, numberOfPeriods)
for period in iterationPeriods:
runValues.extend( MonteCarloRunner(parameters[period[0]]).run(initialValue=runValues[-1], size=int(period[1]),
iterations=1) )
results[k, :] = runValues
if k % 1000==0:
print( '%s iterations done'%str(k) )
return results
def generatePeriodVector(cuts, initialPeriod, loanLength, monthsPerCut, numberOfAdditionalPeriods):
periodVector = [initialPeriod]
for i in range(numberOfAdditionalPeriods):
periodVector.append(
(cuts.cutTransition(periodVector[-1][0]), np.min([monthsPerCut, loanLength - currentSumOfPeriods(
periodVector)])))
return periodVector
def currentSumOfPeriods(periods):
return np.sum([months for cutName,months in [cut for cut in periods]])
def calculateSettlementToSalaryRatios( salaries, loanCalculator, originalLoanLength, initialSettlementToSalaryRatio=30, explosionRate=60, consecutiveAboveExplosionRateForRefinance=3):
originalSettlement = loanCalculator.compute().due
indexes = getIndexWhereLoanExplodes(explosionRate, initialSettlementToSalaryRatio, salaries, originalLoanLength, consecutiveAboveExplosionRateForRefinance)
settlements = np.ones(salaries.shape)*initialSettlementToSalaryRatio
if len(salaries.shape)==2:
iterations = salaries.shape[0]
for iterationNumber in range(iterations):
if indexes[iterationNumber]:
settlements[iterationNumber,indexes[iterationNumber]:]=loanCalculator.reFinance(indexes[iterationNumber],
salaries.shape[1]-indexes[iterationNumber],
refinanceInTime='monthly').due/originalSettlement*initialSettlementToSalaryRatio
else:
settlements[iterationNumber,originalLoanLength:]=np.nan
else:
if indexes:
settlements[indexes:]=loanCalculator.reFinance(indexes,salaries.shape[0]-indexes,refinanceInTime='monthly').due/originalSettlement*initialSettlementToSalaryRatio
else:
settlements[originalLoanLength:]=np.nan
return (indexes, settlements/salaries)
def getIndexWhereLoanExplodes(explosionRate, initialSettlementToSalaryRatio, salaries, originalLoanLength, consecutiveAboveExplosionRateForRefinance):
if len(salaries.shape) == 2: # If simulation had iterations
iterations = salaries.shape[0]
indexWhereRefinanced = np.empty(iterations)
for iterationNumber in range(iterations):
indexWhereRefinanced[iterationNumber] = getIndexWhereSingleLoanExplodes(salaries[iterationNumber,:originalLoanLength],
initialSettlementToSalaryRatio, explosionRate,
consecutiveAboveExplosionRateForRefinance)
else:
indexWhereRefinanced = getIndexWhereSingleLoanExplodes(salaries[:originalLoanLength], initialSettlementToSalaryRatio, explosionRate, consecutiveAboveExplosionRateForRefinance)
return indexWhereRefinanced.astype(int)
def getIndexWhereSingleLoanExplodes(salary, initialSettlementToSalaryRatio, explosionRate, consecutiveAboveExplosionRateForRefinance):
initialRate = initialSettlementToSalaryRatio / salary
indexesWhereAboveExplosion = initialRate > explosionRate / 100.0
indexes= find_subsequence( indexesWhereAboveExplosion, [True]*consecutiveAboveExplosionRateForRefinance )
return 0 if len(indexes) == 0 else indexes[0]+consecutiveAboveExplosionRateForRefinance-1
def find_subsequence(seq, subseq):
target = np.dot(subseq, subseq)
candidates = np.where(np.correlate(seq,
subseq, mode='valid') == target)[0]
# some of the candidates entries may be false positives, double check
check = candidates[:, np.newaxis] + np.arange(len(subseq))
mask = np.all((np.take(seq, check) == subseq), axis=-1)
return candidates[mask]
def printLoanReport(indexWhereRefinanced, settlementToSalaryRatios,originalLoanLength, defaulted):
data = []
if len(settlementToSalaryRatios.shape)==2:
for iterationNumber in range(settlementToSalaryRatios.shape[0]):
refinancedMonth=indexWhereRefinanced[iterationNumber]
hasDefaulted=np.count_nonzero(np.isnan(settlementToSalaryRatios[iterationNumber]))>settlementToSalaryRatios.shape[1]-originalLoanLength
data.append((refinancedMonth,hasDefaulted))
else:
refinancedMonth = indexWhereRefinanced
hasDefaulted = np.count_nonzero(np.isnan(settlementToSalaryRatios)) > len(settlementToSalaryRatios) - originalLoanLength
data=(refinancedMonth, hasDefaulted)
results = pd.DataFrame(columns=['Month where refinanced', 'Defaulted?'],data=data)
defaulted = len(results.loc[results['Defaulted?']==True])
nonRefinanced = len(results.loc[results['Month where refinanced']==0])
succesfullyRefinanced = len(results.loc[(results['Month where refinanced'] != 0) & (results['Defaulted?'] == False)])
print( "%s defaulted, %s payed without refinancing, %s payed with refinancing"% (defaulted, nonRefinanced, succesfullyRefinanced) )
print( "Default rate= %s%%" % str(defaulted/len(results.index)*100.0) )
def killDefaulted(settlementToSalaryRatios, explosionRate, indexWhereRefinanced, consecutiveAboveExplosionRateForDefault):
refinanced=np.argwhere( indexWhereRefinanced !=0 )[:,0]
defaulted = {}
for refinancedIndex in refinanced:
remainingAfterRefinanced = settlementToSalaryRatios[refinancedIndex, indexWhereRefinanced[refinancedIndex]+1:]
indexesWhereAboveExplosion = remainingAfterRefinanced > explosionRate / 100.0
indexes = find_subsequence(indexesWhereAboveExplosion, [True] * consecutiveAboveExplosionRateForDefault)
defaultIndex = None if len(indexes) == 0 else indexWhereRefinanced[refinancedIndex] + 1 + indexes[0] + consecutiveAboveExplosionRateForDefault - 1
if not defaultIndex is None:
defaulted[refinancedIndex]=defaultIndex
for iteration,indexWhereDefaultOccured in defaulted.items():
settlementToSalaryRatios[iteration,indexWhereDefaultOccured:]=np.nan
return (settlementToSalaryRatios, defaulted)