-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathregression.py
33 lines (27 loc) · 1.51 KB
/
regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from scipy.optimize import curve_fit
import numpy as np
from numba import jit
@jit
def _linear(x,alpha,beta):
return alpha + beta * x
def performLinearRegressions(datasets, marketIndex, estimationWindow):
regressors = np.empty((datasets.shape[0],datasets.shape[1],2))
for iteration in range(datasets.shape[0]):
y = datasets[ iteration, :, estimationWindow.nonzero()[0] ]
x = marketIndex[ iteration, :, estimationWindow.nonzero()[0] ]
for assetNumber in range(datasets.shape[1]):
# OLS result params are [alpha beta]
regressors[iteration,assetNumber,:] = curve_fit(_linear, x[ :,assetNumber ], y[ :,assetNumber ])[0]
return regressors
def calculateAbnormalReturns(datasets, marketIndex, window, regressors):
numberOfAssets = datasets.shape[1]
numberOfIterations = datasets.shape[0]
nonzeroWindowSize = len( window.nonzero()[0] )
abnormalReturns = np.empty((numberOfIterations,numberOfAssets,nonzeroWindowSize))
for iterationCount in range( regressors.shape[0] ):
currentIteration = datasets[iterationCount,:,:]
for assetNumber in range( currentIteration.shape[0] ):
windowValues = currentIteration[assetNumber,window.nonzero()[0]]
abnormalReturn = windowValues - ( regressors[iterationCount,assetNumber,0] + regressors[iterationCount,assetNumber,1]*marketIndex[iterationCount,assetNumber,window.nonzero()[0]] )
abnormalReturns[iterationCount,assetNumber,:]= abnormalReturn
return abnormalReturns