-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexp_info.py
executable file
·121 lines (92 loc) · 3.91 KB
/
exp_info.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import (
absolute_import, division, print_function, unicode_literals)
import six
from six.moves import zip, range, map
import sys
import os
import argparse
import numpy as np
import multiworm
import multiworm.analytics
#import where
import blob_info
WALDO_LOC = os.path.join(os.path.dirname(__file__), '..', 'Waldo')
WALDO_CODE = os.path.join(WALDO_LOC, 'code')
WALDO_DATA = os.path.join(WALDO_LOC, 'data', 'worms')
def longest_10(experiment, ten=10):
blob_lifespan = [(blob['bid'], blob['died_t'] - blob['born_t']) for blob in experiment.summary]
blob_lifespan = sorted(blob_lifespan, key=lambda x: x[1], reverse=True)
return blob_lifespan[:ten]
def assess_noise(experiment, npoints=10, plot=False):
noise_est = multiworm.analytics.NoiseEstimator()
analyzer = multiworm.analytics.ExperimentAnalyzer()
analyzer.add_analysis_method(noise_est)
analyzer.analyze((bid, experiment.parse_blob(bid)) for (bid, lifetime) in longest_10(experiment, ten=npoints))
data = analyzer.result_dict()
mean_xy = data['noise']['mean_xy']
std_dev_xy = data['noise']['std_dev_xy']
means = data['noise']['means']
std_devs = data['noise']['std_devs']
if plot:
import matplotlib.pyplot as plt
f, axs = plt.subplots(ncols=2)
f.suptitle('Normal summary statistics for frame-by-frame centroid steps')
for ax, data, title in zip(axs, [means, std_devs],
['X/Y means', 'X/Y stddev']):
print(data)
ax.scatter(*zip(*data))
ax.set_title(title)
ax.axvline()
ax.axhline()
axs[1].set_xlim(left=0)
axs[1].set_ylim(bottom=0)
return mean_xy, std_dev_xy
def waldo_data(data_set):
sys.path.append(WALDO_CODE)
from shared.wio.file_manager import get_good_blobs
print(get_good_blobs(data_set))
def main(argv=None):
if argv is None:
argv = sys.argv
parser = argparse.ArgumentParser(description='Get basic information '
'about an experiment.')
parser.add_argument('data_set',
help='The location of the data set.'#' If names specified in a lookup '
#'file can be selected with a prefix of {0}.'
# .format(where.named_location).replace('%', '%%')
)
parser.add_argument('-n', '--noise', action='store_true',
help='Estimate the amount of noise present in the centroid data. '
'Plot available.')
parser.add_argument('-l', '--longest', type=int, default=10,
help='Display the longest-lived blobs')
parser.add_argument('-p', '--plot', action='store_true',
help='Show a plot (if supported by another command)')
parser.add_argument('-w', '--waldo', action='store_true',
help='Get some Waldo data')
args = parser.parse_args()
#args.data_set = where.where(args.data_set)
if args.waldo:
waldo_data(os.path.basename(args.data_set))
else:
experiment = multiworm.Experiment(experiment_id=args.data_set)
experiment.load_summary()
print('Experiment summary file: {}'.format(experiment.summary_file))
print('Number of blobs : {}'.format(len(experiment.summary)))
if args.noise:
mean_xy, std_dev_xy = assess_noise(experiment, plot=args.plot)
x_stats, y_stats = zip(mean_xy, std_dev_xy)
print('X mean of means/stddevs: {:0.3e} \u00B1 {:0.3e}'.format(*x_stats))
print('Y mean of means/stddevs: {:0.3e} \u00B1 {:0.3e}'.format(*y_stats))
if args.longest:
print(' {:>5s} | {}'.format('ID', 'Life (s)'))
print(' {:->7s}+{:-<10s}'.format('', ''))
for bid, lifespan in longest_10(experiment, args.longest):
print(' {:5d} | {:7.2f}'.format(bid, lifespan))
if args.plot:
import matplotlib.pyplot as plt
plt.show()
if __name__ == '__main__':
sys.exit(main())