forked from s520/ATCFS_For_OpenBVE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Atc.cs
1612 lines (1492 loc) · 77 KB
/
Atc.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2018 S520
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met :
//
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and / or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED.IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
using OpenBveApi.Runtime;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
namespace ATCFS {
/// <summary>
/// ATC-1, ATC-2, ATC-NS, KS-ATC, DS-ATCを再現するクラス
/// </summary>
internal class Atc : Device {
// --- クラス ---
/// <summary>
/// ATC-1, ATC-2を再現するクラス
/// </summary>
private class AtcA {
// --- メンバ ---
private readonly Train train_;
internal int signal_; //!< 車内信号の信号インデックス
internal int is_stop_eb_; //!< ATC-02, 03信号ブレーキフラグ
internal int is_stop_svc_; //!< ATC-30信号ブレーキフラグ
internal int is__brake_reset_; //!< ブレーキ開放フラグ
// --- コンストラクタ ---
/// <summary>
/// 新しいインスタンスを作成する
/// </summary>
/// <param name="train">Trainクラスのインスタンス</param>
internal AtcA(Train train) {
this.train_ = train;
}
// --- 関数 ---
/// <summary>
/// Initializeで実行する関数
/// </summary>
internal void Init() {
signal_ = 0;
is_stop_eb_ = 0;
is_stop_svc_ = 0;
is__brake_reset_ = 0;
}
/// <summary>
/// SetSignalで実行され、車内信号を更新する関数
/// </summary>
/// <remarks>ATC-02, 03, 30信号のブレーキフラグ管理および、とーほぐ新幹線信号インデックスの変換を含む</remarks>
/// <param name="signal">現在のセクションの信号番号</param>
internal void ChangedSignal(int signal) {
// とーほぐ新幹線信号インデックス変換
if (this.train_.Atc.atc_type_ == 1 && signal >= 102) {
signal = signal % 100 - 2;
}
// For Safety
if (signal < this.train_.Atc.atc_spd_list_.Length) {
// 車両最高速度以上の信号は出さない
if (signal > this.train_.Atc.max_signal_) { signal = this.train_.Atc.max_signal_; }
// ATC-02, 03信号ブレーキフラグOFF
if (signal != 0) { is_stop_eb_ = 0; }
// ATC-30信号ブレーキフラグOFF
if (signal != 1) { is_stop_svc_ = 0; }
// ATC-02信号ブレーキフラグON & ブレーキ開放フラグOFF
if (signal == 0 && signal_ != 0) {
is_stop_eb_ = 1;
is__brake_reset_ = (this.train_.Atc.train_spd_ != 0 || is__brake_reset_ != 1) ? 0 : 1;
}
// ATC-30信号ブレーキフラグON & ブレーキ開放フラグOFF
if (signal == 1 && signal_ != 1) {
is_stop_svc_ = 1;
is__brake_reset_ = (this.train_.Atc.train_spd_ != 0 || is__brake_reset_ != 1) ? 0 : 1;
}
// ATCベル
if (signal != signal_) { this.train_.Sounds.AtcDing.Play(); }
// 車内信号の更新
signal_ = signal;
} else {
is_stop_eb_ = 1;
}
}
}
/// <summary>
/// ATC-NS, KS-ATC, DS-ATCを再現するクラス
/// </summary>
private class AtcD {
// --- クラス ---
/// <summary>
/// 停止信号パターン関連を記述するクラス
/// </summary>
internal class SectionD {
// --- メンバ ---
private readonly Train train_;
private double prev_loc_; //! 以前の列車位置[m]
private List<double> section_loc_list_; //!< 閉塞境界位置[m]リスト
internal int track_path_; //!< 開通区間数
internal double red_signal_loc_; //!< 停止信号地点[m]
// --- コンストラクタ ---
/// <summary>
/// 新しいインスタンスを作成する
/// </summary>
/// <param name="train">Trainクラスのインスタンス</param>
internal SectionD(Train train) {
this.train_ = train;
}
// --- 関数 ---
/// <summary>
/// Initializeで実行する関数
/// </summary>
internal void Init() {
section_loc_list_ = new List<double>();
prev_loc_ = 0.0;
track_path_ = 0;
red_signal_loc_ = 0.0;
}
/// <summary>
/// 閉塞境界位置を登録する関数
/// </summary>
/// <param name="distance">対となるセクションまでの距離[m]</param>
internal void RegSection(double distance) {
int def = (int)(this.train_.State.Location - prev_loc_);
if (def != 0) {
prev_loc_ = this.train_.State.Location;
section_loc_list_.Clear();
}
section_loc_list_.Add(prev_loc_ + distance);
}
/// <summary>
/// 停止位置を算出する関数
/// </summary>
internal void CalcSection() {
red_signal_loc_ = BaseFunc.ListGetOrDefault(section_loc_list_, track_path_);
}
}
/// <summary>
/// 駅停車パターン関連を記述するクラス
/// </summary>
internal class StationD {
// --- メンバ ---
private readonly Train train_;
private int is_stop_sta_; //!< 駅停車後方許容地点フラグ
private int[] pattern_is_ready_; //!< 駅への停車開始判定フラグ
internal double[] pattern_end_loc_; //!< 減速完了地点[m]
internal int[] pattern_is_valid_; //!< パターンの状態(0: 無効, 1: 有効)
internal int[] pattern_tget_spd_; //!< 目標速度[km/h]
// --- コンストラクタ ---
/// <summary>
/// 新しいインスタンスを作成する
/// </summary>
/// <param name="train">Trainクラスのインスタンス</param>
internal StationD(Train train) {
this.train_ = train;
}
// --- 関数 ---
/// <summary>
/// Initializeで実行する関数
/// </summary>
internal void Init() {
pattern_is_ready_ = new int[Atc.STA_PATTERN];
pattern_end_loc_ = new double[Atc.STA_PATTERN];
pattern_is_valid_ = new int[Atc.STA_PATTERN];
pattern_tget_spd_ = new int[Atc.STA_PATTERN];
is_stop_sta_ = 0;
}
/// <summary>
/// 駅への停車開始判定を行う関数
/// </summary>
/// <remarks>出発信号が停止現示の場合に駅停車パターンが有効になる</remarks>
/// <param name="signal">出発信号の信号番号</param>
internal void RegStaStop(int signal) {
if (this.train_.Atc.atc_type_ > 1 && signal == 0) {
pattern_is_ready_[0] = (this.train_.Atc.atc_type_ < 4) ? 1 : 0;
pattern_is_ready_[1] = 1;
pattern_is_ready_[2] = (this.train_.Atc.atc_type_ > 2) ? 1 : 0;
}
}
/// <summary>
/// 駅停車パターン(分岐制限)を登録する関数
/// </summary>
/// <param name="distance">減速完了地点までの相対距離[m]</param>
internal void RegStaBranch(int distance) {
pattern_end_loc_[0] = this.train_.State.Location + distance;
pattern_tget_spd_[0] = 70;
pattern_is_valid_[0] = (pattern_is_ready_[0] == 1) ? 1 : 0;
}
/// <summary>
/// 駅停車パターン(手動頭打ち)を登録する関数
/// </summary>
/// <param name="distance">減速完了地点までの相対距離[m]</param>
internal void RegStaManual(int distance) {
pattern_end_loc_[1] = this.train_.State.Location + distance;
switch (this.train_.Atc.atc_type_) {
case 2:
pattern_tget_spd_[1] = 30;
break;
case 3:
pattern_tget_spd_[1] = 15;
break;
case 4:
pattern_tget_spd_[1] = 75;
break;
default:
break;
}
pattern_is_valid_[1] = (pattern_is_ready_[1] == 1) ? 1 : 0;
}
/// <summary>
/// 駅停車パターン(オーバーラン防止)を登録する関数
/// </summary>
/// <param name="distance">減速完了地点までの相対距離[m]</param>
internal void RegStaEnd(int distance) {
pattern_end_loc_[2] = this.train_.State.Location + distance;
pattern_tget_spd_[2] = 0;
pattern_is_valid_[2] = (pattern_is_ready_[2] == 1) ? 1 : 0;
}
/// <summary>
/// 駅停車許容フラグをONにする関数
/// </summary>
internal void RegStaLoc() {
is_stop_sta_ = 1;
}
/// <summary>
/// 駅停車完了判定を行う関数
/// </summary>
/// <remarks>駅停車完了判定が真の場合は駅停車パターンが消去される</remarks>
internal void IsStopSta() {
if (is_stop_sta_ == 1 && this.train_.Atc.train_spd_ == 0 && this.train_.Handles.BrakeNotch > 0) {
for (int i = 0; i < Atc.STA_PATTERN; i++) {
pattern_is_ready_[i] = 0;
pattern_is_valid_[i] = 0;
}
is_stop_sta_ = 0;
}
}
}
/// <summary>
/// 制限速度パターン関連を記述するクラス
/// </summary>
internal class PatternD {
// --- メンバ ---
private readonly Train train_;
internal double[] pattern_end_loc_; //!< 減速完了地点[m]
internal int[] pattern_is_valid_; //!< パターンの状態(0: 無効, 1: 有効)
internal int[] pattern_tget_spd_; //!< 目標速度[km/h]
// --- コンストラクタ ---
/// <summary>
/// 新しいインスタンスを作成する
/// </summary>
/// <param name="train">Trainクラスのインスタンス</param>
internal PatternD(Train train) {
this.train_ = train;
}
// --- 関数 ---
/// <summary>
/// Initializeで実行する関数
/// </summary>
internal void Init() {
pattern_end_loc_ = new double[Atc.USR_PATTERN];
pattern_is_valid_ = new int[Atc.USR_PATTERN];
pattern_tget_spd_ = new int[Atc.USR_PATTERN];
}
/// <summary>
/// 速度制限パターンの登録および消去を行う関数
/// </summary>
/// <param name="type">パターン番号</param>
/// <param name="optional">減速完了地点までの相対距離[m]*1000+目標速度[km/h]</param>
internal void RegPattern(int type, int optional) {
int distance = optional / 1000;
if (distance < 0) { distance = 0; }
int tget_spd = optional % 1000;
if (tget_spd != 999) {
pattern_end_loc_[type] = this.train_.State.Location + distance;
pattern_tget_spd_[type] = tget_spd;
pattern_is_valid_[type] = 1;
} else {
pattern_is_valid_[type] = 0;
}
}
}
// --- メンバ ---
private readonly Train train_;
internal readonly SectionD section_d_;
internal readonly StationD station_d_;
internal readonly PatternD pattern_d_;
private double prev_spd_; //!< 1フレーム前の列車速度[km/h]
internal int is_stop_eb_; //!< ATC-02, 03信号ブレーキフラグ
internal int is_stop_svc_; //!< ATC-30信号ブレーキフラグ
internal int is__brake_reset_; //!< ブレーキ開放フラグ
internal int arrow_spd_; //!< パターン照査速度[km/h]
internal int arrow_signal_; //!< パターン照査速度の信号インデックス
internal int prev_arrow_signal_; //!< 以前のパターン照査速度の信号インデックス
internal int tget_spd_; //!< 目標速度[km/h]
internal int tget_signal_; //!< 目標速度の信号インデックス
internal int prev_tget_signal_; //!< 以前の目標速度の信号インデックス
// --- コンストラクタ ---
/// <summary>
/// 新しいインスタンスを作成する
/// </summary>
/// <param name="train">Trainクラスのインスタンス</param>
internal AtcD(Train train) {
this.train_ = train;
section_d_ = new SectionD(train);
station_d_ = new StationD(train);
pattern_d_ = new PatternD(train);
}
// --- 関数 ---
/// <summary>
/// Initializeで実行する関数
/// </summary>
internal void Init() {
is_stop_eb_ = 0;
is_stop_svc_ = 0;
is__brake_reset_ = 0;
prev_spd_ = 0.0f;
arrow_spd_ = 0;
arrow_signal_ = 0;
prev_arrow_signal_ = 0;
tget_spd_ = 0;
tget_signal_ = 0;
prev_tget_signal_ = 0;
section_d_.Init();
station_d_.Init();
pattern_d_.Init();
}
/// <summary>
/// SetSignalで実行され、開通区間数を更新する関数
/// </summary>
/// <param name="signal">現在のセクションの信号番号</param>
internal void ChangedSignal(int signal) {
section_d_.track_path_ = signal;
}
/// <summary>
/// ATC-NSにおいてATC-30信号ブレーキフラグのON, OFFを行う関数
/// </summary>
/// <remarks>車内信号がATC-30かつ列車速度が30km/h以上から以下へ変化した場合にONになる</remarks>
internal void AtcCheck() {
if (this.train_.Atc.atc_type_ == 2) {
// ATC-30信号ブレーキフラグON & ブレーキ開放フラグOFF
if (tget_signal_ == 1 && Math.Abs(this.train_.Atc.train_spd_) <= 30.0 && prev_spd_ > 30.0) {
is_stop_svc_ = 1;
is__brake_reset_ = 0;
} else if (Math.Abs(this.train_.Atc.train_spd_) > 30.0 && prev_spd_ <= 30.0) {
is_stop_svc_ = 0;
}
}
prev_spd_ = Math.Abs(this.train_.Atc.train_spd_);
}
}
/// <summary>
/// 予見Fuzzy制御を再現するクラス
/// </summary>
private class Fuzzy {
// --- メンバ ---
private readonly Train train_;
private int prev_brake_notch_; //!< 以前の出力ブレーキノッチ(HBを含まない)
private double adj_timer_; //!< 減速度補正を行う次のゲーム内時刻[ms]
private double fuzzy_prev_Tc_; //!< 最後に出力ブレーキノッチが変化したゲーム内時刻[s]
private int fuzzy_prev_Nc_; //!< 最後に変化した出力ブレーキノッチの変化量の絶対値
private List<double> fuzzy_Xp_; //!< 予測減速完了地点[m]
private List<double> fuzzy_Ugg_; //!< 「うまく停止する(GG)」の評価値
private List<double> fuzzy_Uga_; //!< 「正確に停止する(GA)」の評価値
private double fuzzy_Ucg_; //!< 「乗り心地が良い(CG)」の評価値
private double fuzzy_Ucb_; //!< 「乗り心地が悪い(CB)」の評価値
private List<double> fuzzy_U_; //!< "(CG >= CB) And GA"の評価値
private double fuzzy_Usb_; //!< 「安全性が悪い(SB)」の評価値
private double fuzzy_Usvb_; //!< 「安全性がとても悪い(SVB)」の評価値
internal double adj_deceleration_; //!< 各ブレーキノッチの減速度補正値[m/s^2]
internal int[] fuzzy_step_; //!< 全パターンの予見Fuzzy制御の制御段階
private double[] brake_timer_; //!< 全パターンの予見Fuzzy制御を実行する次のゲーム内時刻[ms]
internal int[] prev_tget_spd_; //!< 全パターンの以前の目標速度[km/h]
internal double[] prev_pattern_end_loc_; //!< 全パターンの以前の減速完了地点[m]
internal int[] fuzzy_brake_notch_list_; //!< 全パターンの予見Fuzzy制御の最適ブレーキノッチ
// --- コンストラクタ ---
/// <summary>
/// 新しいインスタンスを作成する
/// </summary>
/// <param name="train">Trainクラスのインスタンス</param>
internal Fuzzy(Train train) {
this.train_ = train;
}
// --- 関数 ---
/// <summary>
/// Initializeで実行する関数
/// </summary>
internal void Init() {
prev_brake_notch_ = 0;
adj_deceleration_ = 0;
adj_timer_ = 0;
fuzzy_prev_Tc_ = 0.0f;
fuzzy_prev_Nc_ = 0;
fuzzy_Ucg_ = 0.0f;
fuzzy_Ucb_ = 0.0f;
fuzzy_Usb_ = 0.0f;
fuzzy_Usvb_ = 0.0f;
fuzzy_step_ = new int[Atc.ALL_PATTERN];
brake_timer_ = new double[Atc.ALL_PATTERN];
fuzzy_Xp_ = new List<double>();
fuzzy_Ugg_ = new List<double>();
fuzzy_Uga_ = new List<double>();
fuzzy_U_ = new List<double>();
prev_tget_spd_ = new int[Atc.ALL_PATTERN];
prev_pattern_end_loc_ = new double[Atc.ALL_PATTERN];
fuzzy_brake_notch_list_ = new int[Atc.ALL_PATTERN];
}
/// <summary>
/// Fuzzyメンバシップ関数L
/// </summary>
/// <remarks>定義域を(a - b, a + b)とする三角形状の関数</remarks>
/// <param name="x">x</param>
/// <param name="a">a</param>
/// <param name="b">b</param>
/// <returns>評価値</returns>
private double FuzzyFuncL(double x, double a, double b) {
if (x <= (a - b) || x >= (a + b)) {
return 0.0;
} else {
return (1.0 - Math.Abs(x - a) / b);
}
}
/// <summary>
/// Fuzzyメンバシップ関数F
/// </summary>
/// <remarks>関数Lでaより大きい部分と1.0とした関数</remarks>
/// <param name="x">x</param>
/// <param name="a">a</param>
/// <param name="b">b</param>
/// <returns>評価値</returns>
private double FuzzyFuncF(double x, double a, double b) {
if (x <= (a - b)) {
return 0.0;
} else if (x >= a) {
return 1.0;
} else {
return (1.0 - Math.Abs(x - a) / b);
}
}
/// <summary>
/// Fuzzyメンバシップ関数A
/// </summary>
/// <remarks>定義域を(-∞, +∞)とした尖った関数</remarks>
/// <param name="x">x</param>
/// <param name="a">a</param>
/// <param name="b">b</param>
/// <returns>評価値</returns>
private double FuzzyFuncA(double x, double a, double b) {
return (b / (Math.Abs(x - a) + b));
}
/// <summary>
/// Fuzzyメンバシップ関数G
/// </summary>
/// <remarks>定義域を(-∞, +∞)とした台形状の関数</remarks>
/// <param name="x">x</param>
/// <param name="a">a</param>
/// <param name="b">b</param>
/// <returns>評価値</returns>
private double FuzzyFuncG(double x, double a, double b) {
if (x >= (a - b) && x <= (a + b)) {
return 1.0;
} else {
return (b / Math.Abs(x - a));
}
}
/// <summary>
/// Fuzzyメンバシップ関数Gの形状を制御する関数
/// </summary>
/// <remarks>メンバシップ関数Gの形状(頂上の平坦部の幅)を速度に応じて連続的に制御する</remarks>
/// <param name="x">速度[km/h]</param>
/// <param name="a">頂上の平坦部の幅の初期値</param>
/// <param name="b">補正係数</param>
/// <returns>頂上の平坦部の幅</returns>
private double FuzzyFuncQ(double x, double a, double b) {
if (b <= 0.0) {
return a;
} else if (x <= Math.Sqrt(a / b)) {
return a;
} else {
return (b * x * x);
}
}
/// <summary>
/// 各ブレーキノッチの減速度の補正値を算出する関数
/// </summary>
/// <remarks>ブレーキノッチが2秒間変化しなかった場合に補正値を算出する</remarks>
internal void FuzzyAdjDeceleration() {
if (this.train_.Atc.brake_notch_ != prev_brake_notch_) {
adj_timer_ = this.train_.Atc.time_ + 2000.0;
fuzzy_prev_Tc_ = this.train_.Atc.time_ / 1000.0;
fuzzy_prev_Nc_ = Math.Abs(this.train_.Atc.brake_notch_ - prev_brake_notch_);
prev_brake_notch_ = this.train_.Atc.brake_notch_;
} else if (this.train_.Atc.time_ >= adj_timer_) {
if (this.train_.Atc.brake_notch_ < this.train_.Atc.max_brake_notch_ + 1) {
if (Math.Abs(this.train_.Atc.train_spd_) != 0 && this.train_.Handles.PowerNotch == 0) {
adj_deceleration_ = this.train_.Accel.ema_accel_ / 3.6 + (this.train_.Atc.max_deceleration_ / 3.6) * (this.train_.Atc.brake_notch_ / (double)(this.train_.Atc.max_brake_notch_));
}
}
}
}
/// <summary>
/// 減速完了地点を予測する関数
/// </summary>
/// <param name="tget_spd">目標速度[km/h]</param>
/// <param name="notch_num">ブレーキノッチ</param>
/// <returns>予測減速完了地点[m]</returns>
private double FuzzyEstLoc(int tget_spd, int notch_num) {
double deceleration = (this.train_.Atc.max_deceleration_ / 3.6) * (notch_num / (double)this.train_.Atc.max_brake_notch_) - adj_deceleration_;
double est_patt_end_loc = double.MaxValue;
if (deceleration != 0) {
est_patt_end_loc = ((this.train_.Atc.train_spd_ / 3.6) * (this.train_.Atc.train_spd_ / 3.6) - (tget_spd / 3.6) * (tget_spd / 3.6)) / (2.0 * deceleration) + this.train_.State.Location;
if (notch_num != this.train_.Atc.brake_notch_) {
est_patt_end_loc += (this.train_.Atc.train_spd_ / 3.6) * this.train_.Atc.lever_delay_;
}
}
return est_patt_end_loc;
}
/// <summary>
/// 予見Fuzzy制御を初期化する関数
/// </summary>
/// <param name="index">パターン番号</param>
/// <param name="pattern_start_loc">パターン降下開始地点[m]</param>
/// <returns>最適ブレーキノッチ</returns>
internal int FuzzyCtrInit(int index, double pattern_start_loc) {
int brake_notch = 0;
double est_loc = this.train_.State.Location + (this.train_.Atc.train_spd_ / 3.6) * 2.0 + 0.5 * (this.train_.Accel.ema_accel_ / 3.6) * 2.0 * 2.0;
if (est_loc >= pattern_start_loc) {
if (this.train_.Atc.brake_notch_ == 0) {
brake_notch = 1;
} else {
brake_notch = this.train_.Atc.brake_notch_;
}
brake_timer_[index] = this.train_.Atc.time_ + 2000.0;
fuzzy_step_[index] = 1;
}
return brake_notch;
}
/// <summary>
/// 予見Fuzzy制御を行う関数
/// </summary>
/// <param name="index">パターン番号</param>
/// <param name="tget_spd">目標速度[km/h]</param>
/// <param name="Xt">減速完了地点[m]</param>
/// <returns>最適ブレーキノッチ</returns>
internal int FuzzyCtrExe(int index, int tget_spd, double Xt) {
int brake_notch = fuzzy_brake_notch_list_[index];
// ノッチ変化後の経過時間[s]
double fuzzy_Tc = this.train_.Atc.time_ / 1000.0 - fuzzy_prev_Tc_;
// 速度による補正をかけたXe[m]
double fuzzy_Xe = FuzzyFuncQ(Math.Abs(this.train_.Atc.train_spd_) - tget_spd, this.train_.Atc.Xe, this.train_.Atc.Xk);
// 速度による補正をかけたXo[m]
double fuzzy_Xo = FuzzyFuncQ(Math.Abs(this.train_.Atc.train_spd_) - tget_spd, this.train_.Atc.Xo, this.train_.Atc.Xk);
fuzzy_Xp_.Clear();
fuzzy_Ugg_.Clear();
fuzzy_Uga_.Clear();
fuzzy_U_.Clear();
if (this.train_.Atc.time_ >= brake_timer_[index]) {
// 各制御則の評価
for (int Np = 0; Np <= this.train_.Atc.max_brake_notch_; Np++) {
double Xp = FuzzyEstLoc(tget_spd, Np);
fuzzy_Xp_.Add(Xp);
double Ugg = FuzzyFuncG(fuzzy_Xp_[Np], Xt, fuzzy_Xe);
fuzzy_Ugg_.Add(Ugg);
double Uga = FuzzyFuncA(fuzzy_Xp_[Np], Xt, fuzzy_Xe);
fuzzy_Uga_.Add(Uga);
}
fuzzy_Ucg_ = FuzzyFuncF(fuzzy_Tc, (1.0 + fuzzy_prev_Nc_ / 2.0), (fuzzy_prev_Nc_ / 2.0));
fuzzy_Ucb_ = 1.0 - fuzzy_Ucg_;
fuzzy_Usb_ = FuzzyFuncL(fuzzy_Xp_[this.train_.Atc.max_brake_notch_], Xt + fuzzy_Xo / 2.0, fuzzy_Xo);
fuzzy_Usvb_ = FuzzyFuncF(fuzzy_Xp_[this.train_.Atc.max_brake_notch_], Xt + 3.0 / 2.0 * fuzzy_Xo, fuzzy_Xo);
// 最適ブレーキノッチの決定
if (fuzzy_Usvb_ > 0.5) {
brake_notch = this.train_.Atc.max_brake_notch_ + 1;
} else if (fuzzy_Usb_ > 0.5) {
brake_notch = this.train_.Atc.max_brake_notch_;
} else if (BaseFunc.ListGetOrDefault(fuzzy_Ugg_, this.train_.Atc.brake_notch_) == 1 || fuzzy_Ucg_ < fuzzy_Ucb_) {
brake_notch = (this.train_.Atc.brake_notch_ > this.train_.Atc.max_brake_notch_) ? this.train_.Atc.max_brake_notch_ : this.train_.Atc.brake_notch_;
} else if (fuzzy_Ucg_ >= fuzzy_Ucb_) {
int Np_min = this.train_.Atc.brake_notch_ - 2;
if (Np_min < 0) { Np_min = 0; }
int Np_max = this.train_.Atc.brake_notch_ + 2;
if (Np_max > this.train_.Atc.max_brake_notch_) { Np_max = this.train_.Atc.max_brake_notch_; }
for (int Np = Np_min; Np <= Np_max; Np++) {
double U = fuzzy_Uga_[Np];
fuzzy_U_.Add(U);
}
double U_max = fuzzy_U_.Max();
if (U_max == 0) {
brake_notch = this.train_.Atc.brake_notch_;
} else {
int Np_best = fuzzy_U_.IndexOf(U_max);
brake_notch = Np_min + Np_best;
}
}
brake_timer_[index] = this.train_.Atc.time_ + 1000.0;
}
return brake_notch;
}
}
// --- メンバ ---
private readonly Train train_;
private readonly AtcA atc_a_;
private readonly AtcD atc_d_;
private readonly Fuzzy fuzzy_;
private const int ALL_PATTERN = 8; //!< パターンの総数
private const int STA_PATTERN = 3; //!< 駅停車パターンの総数
private const int USR_PATTERN = 3; //!< 速度制限パターンの総数
private int max_brake_notch_; //!< 常用最大ブレーキノッチ(HBを含まない)
private int brake_notch_; //!< 出力ブレーキノッチ(HBを含まない)
private int[] default_notch_; //!< 標準ブレーキノッチ
private int max_signal_; //!< 車両ATC最高速度に対応する信号インデックス
private double[] pattern_list_; //!< デジタルATC用速度照査パターン
private double[] pattarn_end_loc_list_; //!< 全パターンの減速完了地点[m]
private int[] pattern_is_valid_list_; //!< 全パターンの状態(0: 無効, 1: 有効)
private int[] pattern_tget_spd_list_; //!< 全パターンの目標速度[km/h]
private int[] pattern_arrow_spd_list_; //!< 全パターンのパターン照査速度[km/h]
private double[] pattern_start_loc_list_; //!< 全パターンのパターン降下開始地点[m]
private double debug_timer_; //!< Debug出力する次のゲーム内時刻[ms]
private double brake_timer_; //!< ブレーキノッチを変更する次のゲーム内時刻[ms]
private double max_deceleration_; //!< 常用最大減速度[km/h/s]
private int atc_power_; //!< ATC電源(0: 消灯, 1: 点灯)
private int atc_use_; //!< ATC(0: 消灯, 1: 点灯)
private int atc_type_; //!< ATC方式(0: ATC-1, 1: ATC-2, 2: ATC-NS, 3: KS-ATC, 4: DS-ATC)
private int atc_max_spd_; //!< 車両ATC最高速度[km/h]
private int[] atc_spd_list_; //!< 信号インデックスに対応する速度[km/h]
private double[] atc_deceleration_; //!< ATCブレーキ減速度[km/h/s]
private int atc_reset_sw_; //!< 確認ボタンの状態(0: 解放, 1: 押下)
internal int atc_brake_notch_ { get; private set; } //!< ATC出力ブレーキノッチ(HBを含まない)
private int atc_red_signal_; //!< 停止現示(0: 消灯, 1: 点灯)
private int atc_green_signal_; //!< 進行現示(0: 消灯, 1: 点灯)
private int[] atc_sig_indicator_; //!< ATC速度表示インジケータ(0: 消灯, 1: 点灯)
private int[] atc_spd_7seg_; //!< 7セグ用ATC速度表示
private int atc_signal_index_; //!< ATC速度に対応する信号インデックス
private int atc_spd_; //!< ATC速度[km/h]
private int dsatc_arrow_spd_; //!< DS-ATC用パターン照査速度[km/h]
private int[] sub_spd_label_1_; //!< 副速度計用目盛 ATC速度-20 km/h
private int[] sub_spd_label_2_; //!< 副速度計用目盛 ATC速度-10 km/h
private int[] sub_spd_label_3_; //!< 副速度計用目盛 ATC速度
private int[] sub_spd_label_4_; //!< 副速度計用目盛 ATC速度+10 km/h
private int sub_atc_spd_; //!< 副速度計用 ATC速度[km/h]
private int sub_train_spd_; //!< 副速度計用 列車速度[km/h]
private double lever_delay_; //!< ブレーキハンドルの操作から指令出力までの遅れ時間[s]
private int atc_eb_lamp_; //!< ATC非常(0: 消灯, 1: 点灯)
private int atc_svc_lamp_; //!< ATC常用(0: 消灯, 1: 点灯)
private double Xe; //!< 減速完了地点からの許容誤差[m]
private double Xo; //!< 減速完了地点からの過走限界距離[m]
private double Xk; //!< XeおよびXoを高速域で拡大させる係数
private double train_spd_; //!< 列車速度[km/h]
private double time_; //!< ゲーム内時刻[ms]
private List<int> beacon_type_; //!< 地上子種別
private List<int> beacon_sig_; //!< 対となるセクションの信号
private List<double> beacon_dist_; //!< 対となるセクションまでの距離[m]
private List<int> beacon_opt_; //!< 地上子に設定された任意の値
// --- コンストラクタ ---
/// <summary>
/// 新しいインスタンスを作成する
/// </summary>
/// <param name="train">Trainクラスのインスタンス</param>
internal Atc(Train train) {
this.train_ = train;
this.atc_a_ = new AtcA(train);
this.atc_d_ = new AtcD(train);
this.fuzzy_ = new Fuzzy(train);
}
// --- 関数 ---
/// <summary>
/// 速度に対応する信号インデックスを返す関数
/// </summary>
/// <remarks>指定された速度以下の近似値に対応する信号インデックスを検索する</remarks>
/// <param name="spd">速度[km/h]</param>
/// <returns>速度に対応する信号インデックス</returns>
private int SearchSignal(int spd) {
return BaseFunc.UpperBound(atc_spd_list_, spd) - 1;
}
/// <summary>
/// 信号インデックスを速度に変換する関数
/// </summary>
/// <remarks>ATC-1のみ220km/h以上300km/h未満は"対応速度+5km/h"、300km/h以上は"対応速度+3km/h"を返す</remarks>
/// <param name="index">信号インデックス</param>
/// <returns>信号インデックスに対応する速度[km/h]</returns>
private int ItoV(int index) {
int atc_spd = BaseFunc.ArrayGetOrDefault(atc_spd_list_, index);
if (atc_type_ == 0 && atc_spd >= 220) {
if (atc_spd >= 300) {
atc_spd += 3;
} else {
atc_spd += 5;
}
}
return atc_spd;
}
/// <summary>
/// 信号インデックスを速度に変換する関数
/// </summary>
/// <remarks><paramref name="is_display"/>が偽かつATC-1のみ220km/h以上300km/h未満は"対応速度+5km/h"、300km/h以上は"対応速度+3km/h"を返す</remarks>
/// <param name="index">信号インデックス</param>
/// <param name="is_display">パネル表示用かどうか</param>
/// <returns>信号インデックスに対応する速度[km/h]</returns>
private int ItoV(int index, bool is_display) {
int atc_spd = BaseFunc.ArrayGetOrDefault(atc_spd_list_, index);
if (atc_type_ == 0 && atc_spd >= 220 && !is_display) {
if (atc_spd >= 300) {
atc_spd += 3;
} else {
atc_spd += 5;
}
}
return atc_spd;
}
/// <summary>
/// デジタルATC用速度照査パターンを作成する関数
/// </summary>
private void SetPatternList() {
for (int v = 0; v < 71 && v < atc_max_spd_ + 1; v++) {
pattern_list_[v] = ((v / 3.6) * (v / 3.6)) / (2.0 * (((max_deceleration_ / max_brake_notch_) * default_notch_[3]) / 3.6));
}
for (int v = 71; v < 111 && v < atc_max_spd_ + 1; v++) {
pattern_list_[v] = ((v / 3.6) * (v / 3.6) - (70.0 / 3.6) * (70.0 / 3.6)) / (2.0 * (((max_deceleration_ / max_brake_notch_) * default_notch_[2]) / 3.6)) + pattern_list_[70];
}
for (int v = 111; v < 161 && v < atc_max_spd_ + 1; v++) {
pattern_list_[v] = ((v / 3.6) * (v / 3.6) - (110.0 / 3.6) * (110.0 / 3.6)) / (2.0 * (((max_deceleration_ / max_brake_notch_) * default_notch_[1]) / 3.6)) + pattern_list_[110];
}
for (int v = 161; v < atc_max_spd_ + 1; v++) {
pattern_list_[v] = ((v / 3.6) * (v / 3.6) - (160.0 / 3.6) * (160.0 / 3.6)) / (2.0 * (((max_deceleration_ / max_brake_notch_) * default_notch_[0]) / 3.6)) + pattern_list_[160];
}
}
/// <summary>
/// ATCを投入する際に実行する関数
/// </summary>
private void Start() {
if (atc_use_ == 0) {
Initialize(0);
atc_use_ = 1;
// ATCベル
this.train_.Sounds.AtcDing.Play();
}
}
/// <summary>
/// ATCを遮断する際に実行する関数
/// </summary>
private void Exit() {
if (atc_use_ == 1) {
atc_use_ = 0;
Initialize(0);
}
}
/// <summary>
/// SetSignalで実行される関数
/// </summary>
/// <param name="signal">現在のセクションの信号番号</param>
private void ChangedSignal(int signal) {
if (atc_use_ == 1) {
if (atc_type_ < 2) {
this.atc_a_.ChangedSignal(signal);
} else {
this.atc_d_.ChangedSignal(signal);
}
}
}
/// <summary>
/// SetBeaconDataで実行される関数
/// </summary>
/// <param name="index">地上子種別</param>
/// <param name="signal">対となるセクションの信号番号</param>
/// <param name="distance">対となるセクションまでの距離[m]</param>
/// <param name="optional">地上子に設定された任意の値</param>
private void PassedBeacon(int index, int signal, double distance, int optional) {
switch (index) {
case 70:
PassedLoop(signal);
break;
case 80:
atc_d_.section_d_.RegSection(distance);
break;
case 81:
atc_d_.station_d_.RegStaStop(signal);
break;
case 82:
atc_d_.station_d_.RegStaBranch(optional);
break;
case 83:
atc_d_.station_d_.RegStaManual(optional);
break;
case 84:
atc_d_.station_d_.RegStaEnd(optional);
break;
case 85:
atc_d_.station_d_.RegStaLoc();
break;
case 86:
atc_d_.pattern_d_.RegPattern(0, optional);
break;
case 87:
atc_d_.pattern_d_.RegPattern(1, optional);
break;
case 88:
atc_d_.pattern_d_.RegPattern(2, optional);
break;
case 90:
ChangedAtcType(optional);
break;
default:
break;
}
}
/// <summary>
/// ATC方式を切り替える関数
/// </summary>
/// <param name="atc_type">ATC方式</param>
private void ChangedAtcType(int atc_type) {
if (atc_type != atc_type_ && atc_type < 5) {
if (atc_type < 2 && atc_type_ > 1) { // デジタルATCからアナログATCへの切り替え
atc_a_.signal_ = atc_d_.section_d_.track_path_;
atc_d_.Init();
} else if (atc_type > 1 && atc_type_ < 2) { // アナログATCからデジタルATCへの切り替え
atc_d_.section_d_.track_path_ = atc_a_.signal_;
atc_a_.Init();
}
atc_type_ = atc_type;
}
}
/// <summary>
/// ATC-1, 2, NSにおいて停止限界(ループコイル)を通過した際に実行する関数
/// </summary>
/// <remarks>信号番号が0の際に03信号を発信する</remarks>
/// <param name="signal">対となるセクションの信号番号</param>
private void PassedLoop(int signal) {
if (atc_use_ == 1) {
if (signal == 0) { // ATC-03信号ブレーキフラグON & ブレーキ開放フラグOFF
if (atc_type_ < 2 && atc_a_.is_stop_eb_ != 1) {
atc_a_.is_stop_eb_ = 1;
atc_a_.is__brake_reset_ = 0;
}
if (atc_type_ == 2 && atc_d_.is_stop_eb_ != 1) {
atc_d_.is_stop_eb_ = 1;
atc_d_.is__brake_reset_ = 0;
}
this.train_.Sounds.AtcDing.Play(); // ATCベル
} else { // ATC-03信号ブレーキフラグOFF
if (atc_type_ == 2 && atc_d_.is_stop_eb_ == 1) {
atc_d_.is_stop_eb_ = 0;
}
}
}
}
/// <summary>
/// ATC-1, 2, NSにおいて確認扱いの判定を行う関数
/// </summary>
/// <remarks>ATC-03信号の場合は列車速度が0km/h、ATC-30信号の場合は30km/h以下である場合、ブレーキ開放フラグがONになる</remarks>
private void Reset() {
if (atc_use_ == 1) {
if (train_spd_ == 0.0) {
if (atc_type_ < 2 && atc_a_.is_stop_eb_ == 1) {
atc_a_.is__brake_reset_ = 1;
}
if (atc_type_ == 2 && atc_d_.is_stop_eb_ == 1) {
atc_d_.is__brake_reset_ = 1;
}
}
if (Math.Abs(train_spd_) <= 30.0) {
if (atc_type_ < 2 && atc_a_.is_stop_svc_ == 1) { atc_a_.is__brake_reset_ = 1; }
if (atc_type_ == 2 && atc_d_.is_stop_svc_ == 1) { atc_d_.is__brake_reset_ = 1; }
}
}
}
/// <summary>
/// 確認ボタンが押下された際に実行する関数
/// </summary>
private void ResetSwDown() {
Reset();
if (atc_reset_sw_ == 0) {
atc_reset_sw_ = 1;
this.train_.Sounds.AtcSwDownSound.Play();
}
}
/// <summary>
/// 確認ボタンが開放された際に実行する関数
/// </summary>
private void ResetSwUp() {
if (atc_reset_sw_ == 1) {
atc_reset_sw_ = 0;
this.train_.Sounds.AtcSwUpSound.Play();
}
}
/// <summary>
/// 距離に対応する速度を返す関数
/// </summary>
/// <remarks>指定された距離の近似値に対応する速度を検索する</remarks>
/// <param name="distance">距離[m]</param>
/// <returns>距離に対応する速度[km/h]</returns>
private int SearchPattern(double distance) {
int back_index = (int)BaseFunc.LowerBound(pattern_list_, 1, pattern_list_.Count() - 1, distance, Comparer<double>.Default);
int front_index = back_index - 1;
double x = pattern_list_[front_index] - distance;
double y = pattern_list_[back_index] - distance;
int approx_index = 0;
if (x * x < y * y) {
approx_index = front_index;
} else {
approx_index = back_index;
}
return approx_index;
}
/// <summary>
/// パターンが無効の場合に目標速度を車両ATC最高速度に修正する関数