-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsplit_data.py
executable file
·65 lines (51 loc) · 2.22 KB
/
split_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import os
from optparse import OptionParser
import numpy as np
import pandas as pd
import file_handling as fh
"""
Randomly split a jsonlist (and optionally, a labels and/or covaraites dataframe) into train and test.
"""
def main():
usage = "%prog input.jsonlist ouput_dir [labels.csv covariates.csv ...]"
parser = OptionParser(usage=usage)
parser.add_option('--test_prop', dest='test_prop', default=0.2,
help='proportion of documents to use for test data: default=%default')
parser.add_option('--train', dest='train', default='train',
help='output prefix for training data: default=%default')
parser.add_option('--test', dest='test', default='test',
help='output prefix for test data: default=%default')
(options, args) = parser.parse_args()
infile = args[0]
output_dir = args[1]
if len(args) > 2:
csv_files = args[2:]
else:
csv_files = []
test_prop = float(options.test_prop)
train_prefix = options.train
test_prefix = options.test
print("Reading", infile)
items = fh.read_jsonlist(infile)
n_items = len(items)
n_test = int(n_items * test_prop)
print("Creating random test set of %d items" % n_test)
n_train = n_items - n_test
train_indices = np.random.choice(np.arange(n_items), size=n_train, replace=False)
test_indices = list(set(range(n_items)) - set(train_indices))
train_items = [items[i] for i in train_indices]
test_items = [items[i] for i in test_indices]
fh.write_jsonlist(train_items, os.path.join(output_dir, train_prefix + '.jsonlist'))
fh.write_jsonlist(test_items, os.path.join(output_dir, test_prefix + '.jsonlist'))
for file in csv_files:
print(file)
basename = os.path.basename(file)
df = pd.read_csv(file, header=0, index_col=0)
train_df_index = [df.index[i] for i in train_indices]
train_df = df.loc[train_df_index]
train_df.to_csv(os.path.join(output_dir, train_prefix + '.' + basename))
test_df_index = [df.index[i] for i in test_indices]
test_df = df.loc[test_df_index]
test_df.to_csv(os.path.join(output_dir, test_prefix + '.' + basename))
if __name__ == '__main__':
main()