|
15 | 15 | - [Biobambam2](https://gitlab.com/german.tischler/biobambam2)
|
16 | 16 | > Tischler, G., Leonard, S. biobambam: tools for read pair collation based algorithms on BAM files. Source Code Biol Med 9, 13 (2014). <https://doi.org/10.1186/1751-0473-9-13>
|
17 | 17 | - [Bowtie2](http://bowtie-bio.sourceforge.net/bowtie2/index.shtml)
|
| 18 | + |
18 | 19 | > - Langmead B, Wilks C., Antonescu V., Charles R. Scaling read aligners to hundreds of threads on general-purpose processors. Bioinformatics. bty648.
|
19 | 20 | > - Langmead B, Salzberg S. Fast gapped-read alignment with Bowtie 2. Nature Methods. 2012, 9:357-359.
|
20 | 21 | > - Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology 10:R25.
|
| 22 | +
|
21 | 23 | - [BWA](http://bio-bwa.sourceforge.net/)
|
22 | 24 | > Li H. and Durbin R. (2009) Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics, 25:1754-60. [PMID: 19451168]
|
23 | 25 | - [FastP](https://github.com/OpenGene/fastp)
|
|
33 | 35 | > Petr Danecek, James K Bonfield, Jennifer Liddle, John Marshall, Valeriu Ohan, Martin O Pollard, Andrew Whitwham, Thomas Keane, Shane A McCarthy, Robert M Davies, Heng Li
|
34 | 36 | > GigaScience, Volume 10, Issue 2, February 2021, giab008, <https://doi.org/10.1093/gigascience/giab008>
|
35 | 37 | - [Snap](http://snap.cs.berkeley.edu)
|
| 38 | + |
36 | 39 | > - Faster and More Accurate Sequence Alignment with SNAP. Matei Zaharia, William J. Bolosky, Kristal Curtis, Armando Fox, David Patterson, Scott Shenker, Ion Stoica, Richard M. Karp, and Taylor Sittler. arXiv:1111.5572v1, November 2011.
|
37 | 40 | > - Fuzzy set intersection based paired-end short-read alignment. William J. Bolosky, Arun Subramaniyan, Matei Zaharia, Ravi Pandya, Taylor Sittler, and David Patterson. BioRxiv, November 2021.
|
38 | 41 |
|
| 42 | + > Andrews, S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. |
| 43 | +
|
| 44 | +- [MultiQC](https://pubmed.ncbi.nlm.nih.gov/27312411/) |
| 45 | + |
| 46 | + > Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016 Oct 1;32(19):3047-8. doi: 10.1093/bioinformatics/btw354. Epub 2016 Jun 16. PubMed PMID: 27312411; PubMed Central PMCID: PMC5039924. |
| 47 | +
|
39 | 48 | ## Software packaging/containerisation tools
|
40 | 49 |
|
41 | 50 | - [Anaconda](https://anaconda.com)
|
|
52 | 61 |
|
53 | 62 | - [Docker](https://dl.acm.org/doi/10.5555/2600239.2600241)
|
54 | 63 |
|
| 64 | + > Merkel, D. (2014). Docker: lightweight linux containers for consistent development and deployment. Linux Journal, 2014(239), 2. doi: 10.5555/2600239.2600241. |
| 65 | +
|
55 | 66 | - [Singularity](https://pubmed.ncbi.nlm.nih.gov/28494014/)
|
| 67 | + |
56 | 68 | > Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for mobility of compute. PLoS One. 2017 May 11;12(5):e0177459. doi: 10.1371/journal.pone.0177459. eCollection 2017. PubMed PMID: 28494014; PubMed Central PMCID: PMC5426675.
|
0 commit comments