Skip to content

Commit 671ff6a

Browse files
authored
Merge pull request #361 from neurodata/staging
v0.0.3: merge staging into main
2 parents 9ee05b7 + ec29e47 commit 671ff6a

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

59 files changed

+3529
-3481
lines changed

Diff for: .codecov.yml

+24
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,24 @@
1+
codecov:
2+
token: d73047ad-2322-4be0-962c-7de537deff4a
3+
branch: main
4+
5+
coverage:
6+
status:
7+
project:
8+
default:
9+
# Commits pushed to main should not make the overall
10+
# project coverage decrease by more than 1%:
11+
target: auto
12+
threshold: 1%
13+
patch:
14+
default:
15+
# Be tolerant on slight code coverage diff on PRs to limit
16+
# noisy red coverage status on github PRs.
17+
# Note: The coverage stats are still uploaded
18+
# to codecov so that PR reviewers can see uncovered lines
19+
target: auto
20+
threshold: 1%
21+
22+
ignore:
23+
- "proglearn/sims"
24+
- "proglearn/tests"

Diff for: README.md

+5-2
Original file line numberDiff line numberDiff line change
@@ -1,10 +1,13 @@
11
# ProgLearn
22

33
[![Build Status](https://travis-ci.org/neurodata/ProgLearn.svg?branch=main)](https://travis-ci.org/neurodata/ProgLearn)
4-
[![codecov](https://codecov.io/gh/neurodata/ProgLearn/branches/main/graph/badge.svg)](https://codecov.io/gh/neurodata/ProgLearn)
4+
[![Codecov](https://codecov.io/gh/neurodata/ProgLearn/branches/main/graph/badge.svg)](https://codecov.io/gh/neurodata/ProgLearn)
55
[![PyPI version](https://img.shields.io/pypi/v/proglearn.svg)](https://pypi.org/project/proglearn/)
6-
[![arXiv shield](https://img.shields.io/badge/arXiv-2004.12908-red.svg?style=flat)](https://arxiv.org/abs/2004.12908)
6+
[![arXiv](https://img.shields.io/badge/arXiv-2004.12908-red.svg?style=flat)](https://arxiv.org/abs/2004.12908)
77
[![License](https://img.shields.io/badge/License-MIT-blue)](https://opensource.org/licenses/MIT)
8+
[![Netlify Status](https://img.shields.io/netlify/97f86f49-81ed-4292-a100-f7031b54ecc7)](https://app.netlify.com/sites/neuro-data-proglearn/deploys)
9+
[![Downloads](https://img.shields.io/pypi/dm/proglearn.svg)](https://pypi.org/project/proglearn/#files)
10+
811

912
`ProgLearn` (**Prog**ressive **Learn**ing) is a package for exploring and using progressive learning algorithms developed by the [neurodata group](https://neurodata.io).
1013

Diff for: benchmarks/parity_experiment/experiment.ipynb

+43-44
Large diffs are not rendered by default.

Diff for: benchmarks/parity_experiment/generate_paper_plot.py

+8-44
Original file line numberDiff line numberDiff line change
@@ -80,7 +80,7 @@ def get_colors(colors, inds):
8080

8181
ns = np.concatenate((n1s, n2s + n1s[-1]))
8282
ls = ["-", "--"]
83-
algorithms = ["XOR Forest", "N-XOR Forest", "Lifelong Forest", "Naive Forest"]
83+
algorithms = ["XOR Forest", "N-XOR Forest", "Progressive Learning Forest (PLF)", "Random Forest (RF)"]
8484

8585

8686
TASK1 = "XOR"
@@ -92,23 +92,6 @@ def get_colors(colors, inds):
9292
colors = sns.color_palette("Set1", n_colors=2)
9393

9494
ax1 = fig.add_subplot(gs[7:13, 2:8])
95-
# for i, algo in enumerate(algorithms):
96-
ax1.plot(
97-
n1s,
98-
mean_error[0, : len(n1s)],
99-
label=algorithms[0],
100-
c=colors[1],
101-
ls=ls[np.sum(0 > 1).astype(int)],
102-
lw=3,
103-
)
104-
ax1.plot(
105-
ns[len(n1s) :],
106-
mean_error[2, len(n1s) :],
107-
label=algorithms[1],
108-
c=colors[1],
109-
ls=ls[1],
110-
lw=3,
111-
)
11295

11396
ax1.plot(
11497
ns,
@@ -134,7 +117,7 @@ def get_colors(colors, inds):
134117
ax1.set_xlabel("Total Sample Size", fontsize=fontsize)
135118
ax1.tick_params(labelsize=labelsize)
136119
ax1.set_yticks([0.1, 0.3, 0.5])
137-
ax1.set_xticks([250, 750, 1500])
120+
ax1.set_xticks([50, 750, 1500])
138121
# ax1.axvline(x=750, c='gray', linewidth=1.5, linestyle="dashed")
139122
ax1.set_title("XOR", fontsize=30)
140123

@@ -149,43 +132,25 @@ def get_colors(colors, inds):
149132
#######################
150133
mean_error = unpickle("plots/mean_xor_nxor.pickle")
151134

152-
algorithms = ["XOR Forest", "N-XOR Forest", "Lifelong Forest", "Naive Forest"]
135+
algorithms = ["XOR Forest", "N-XOR Forest", "Progressive Learning Forest (PLF)", "Random Forest (RF)"]
153136

154137
TASK1 = "XOR"
155138
TASK2 = "N-XOR"
156139

157140
ax1 = fig.add_subplot(gs[7:13, 10:16])
158-
ax1.plot(
159-
n1s,
160-
mean_error[0, : len(n1s)],
161-
label=algorithms[0],
162-
c=colors[1],
163-
ls=ls[np.sum(0 > 1).astype(int)],
164-
lw=3,
165-
)
166-
ax1.plot(
167-
ns[len(n1s) :],
168-
mean_error[2, len(n1s) :],
169-
label=algorithms[1],
170-
c=colors[1],
171-
ls=ls[1],
172-
lw=3,
173-
)
174141

175142
ax1.plot(
176143
ns[len(n1s) :],
177144
mean_error[3, len(n1s) :],
178145
label=algorithms[2],
179146
c=colors[0],
180-
ls=ls[1],
181147
lw=3,
182148
)
183149
ax1.plot(
184150
ns[len(n1s) :],
185151
mean_error[5, len(n1s) :],
186152
label=algorithms[3],
187153
c="g",
188-
ls=ls[1],
189154
lw=3,
190155
)
191156

@@ -196,7 +161,7 @@ def get_colors(colors, inds):
196161
ax1.tick_params(labelsize=labelsize)
197162
ax1.set_yticks([0.1, 0.5, 0.9])
198163
# ax1.set_yticks([0.15, 0.2])
199-
ax1.set_xticks([250, 750, 1500])
164+
ax1.set_xticks([50, 750, 1500])
200165
# ax1.axvline(x=750, c='gray', linewidth=1.5, linestyle="dashed")
201166

202167
# ax1.set_ylim(0.11, 0.21)
@@ -214,7 +179,7 @@ def get_colors(colors, inds):
214179

215180
##################
216181
mean_te = unpickle("plots/mean_te_xor_nxor.pickle")
217-
algorithms = ["Lifelong BTE", "Lifelong FTE", "Naive BTE", "Naive FTE"]
182+
algorithms = ["PLF BTE", "PLF FTE", "RF BTE", "RF FTE"]
218183

219184
TASK1 = "XOR"
220185
TASK2 = "N-XOR"
@@ -243,7 +208,7 @@ def get_colors(colors, inds):
243208
ax1.set_xlabel("Total Sample Size", fontsize=fontsize)
244209
ax1.tick_params(labelsize=labelsize)
245210
ax1.set_yticks([0.05, 1, 2.5])
246-
ax1.set_xticks([250, 750, 1500])
211+
ax1.set_xticks([50, 750, 1500])
247212
# ax1.axvline(x=750, c='gray', linewidth=1.5, linestyle="dashed")
248213
right_side = ax1.spines["right"]
249214
right_side.set_visible(False)
@@ -270,13 +235,12 @@ def get_colors(colors, inds):
270235
mean_te[1, len(n1s) :],
271236
label=algorithms[1],
272237
c=colors[0],
273-
ls=ls[1],
274238
lw=3,
275239
)
276240

277241
ax1.plot(ns, mean_te[2], label=algorithms[2], c="g", ls=ls[0], lw=3)
278242
ax1.plot(
279-
ns[len(n1s) :], mean_te[3, len(n1s) :], label=algorithms[3], c="g", ls=ls[1], lw=3
243+
ns[len(n1s) :], mean_te[3, len(n1s) :], label=algorithms[3], c="g", lw=3
280244
)
281245

282246
ax1.set_ylabel("Forward/Backward \n Transfer Efficiency (FTE/BTE)", fontsize=fontsize)
@@ -285,7 +249,7 @@ def get_colors(colors, inds):
285249
ax1.set_xlabel("Total Sample Size", fontsize=fontsize)
286250
ax1.tick_params(labelsize=labelsize)
287251
ax1.set_yticks([0.2, 0.6, 1, 1.2])
288-
ax1.set_xticks([250, 750, 1500])
252+
ax1.set_xticks([50, 750, 1500])
289253
# ax1.axvline(x=750, c='gray', linewidth=1.5, linestyle="dashed")
290254
right_side = ax1.spines["right"]
291255
right_side.set_visible(False)

Diff for: benchmarks/parity_experiment/plots/parity_exp.pdf

-506 Bytes
Binary file not shown.

Diff for: benchmarks/spiral_experiment/experiment.ipynb

+548
Large diffs are not rendered by default.

Diff for: benchmarks/spiral_experiment/plots/spiral_plot.pdf

43.8 KB
Binary file not shown.

Diff for: benchmarks/uf_posterior_visualization/uncertaintyforest_fig1.ipynb

+187
Large diffs are not rendered by default.

Diff for: benchmarks/xor_rxor_spiral_exp/control_exp.py

-174
This file was deleted.

0 commit comments

Comments
 (0)