1) Download the data from GLUE website (https://gluebenchmark.com/tasks) using following commands:
wget https://gist.githubusercontent.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e/raw/17b8dd0d724281ed7c3b2aeeda662b92809aadd5/download_glue_data.py
python download_glue_data.py --data_dir glue_data --tasks all
./examples/roberta/preprocess_GLUE_tasks.sh glue_data <glue_task_name>
glue_task_name
is one of the following:
{ALL, QQP, MNLI, QNLI, MRPC, RTE, STS-B, SST-2, CoLA}
Use ALL
for preprocessing all the glue tasks.
Example fine-tuning cmd for RTE
task
TOTAL_NUM_UPDATES=2036 # 10 epochs through RTE for bsz 16
WARMUP_UPDATES=61 # 6 percent of the number of updates
LR=1e-05 # Peak LR for polynomial LR scheduler.
NUM_CLASSES=2
MAX_SENTENCES=16 # Batch size.
BART_PATH=/path/to/bart/model.pt
CUDA_VISIBLE_DEVICES=0,1 python train.py RTE-bin/ \
--restore-file $BART_PATH \
--max-sentences $MAX_SENTENCES \
--max-tokens 4400 \
--task sentence_prediction \
--add-prev-output-tokens \
--layernorm-embedding \
--share-all-embeddings \
--share-decoder-input-output-embed \
--reset-optimizer --reset-dataloader --reset-meters \
--required-batch-size-multiple 1 \
--init-token 0 \
--arch bart_large \
--criterion sentence_prediction \
--num-classes $NUM_CLASSES \
--dropout 0.1 --attention-dropout 0.1 \
--weight-decay 0.01 --optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-08 \
--clip-norm 0.0 \
--lr-scheduler polynomial_decay --lr $LR --total-num-update $TOTAL_NUM_UPDATES --warmup-updates $WARMUP_UPDATES \
--fp16 --fp16-init-scale 4 --threshold-loss-scale 1 --fp16-scale-window 128 \
--max-epoch 10 \
--find-unused-parameters \
--best-checkpoint-metric accuracy --maximize-best-checkpoint-metric;
For each of the GLUE task, you will need to use following cmd-line arguments:
Model | MNLI | QNLI | QQP | RTE | SST-2 | MRPC | CoLA | STS-B |
---|---|---|---|---|---|---|---|---|
--num-classes |
3 | 2 | 2 | 2 | 2 | 2 | 2 | 1 |
--lr |
5e-6 | 1e-5 | 1e-5 | 1e-5 | 5e-6 | 2e-5 | 2e-5 | 2e-5 |
bsz |
128 | 32 | 32 | 32 | 128 | 64 | 64 | 32 |
--total-num-update |
30968 | 33112 | 113272 | 1018 | 5233 | 1148 | 1334 | 1799 |
--warmup-updates |
1858 | 1986 | 6796 | 61 | 314 | 68 | 80 | 107 |
For STS-B
additionally add --regression-target --best-checkpoint-metric loss
and remove --maximize-best-checkpoint-metric
.
Note:
a) --total-num-updates
is used by --polynomial_decay
scheduler and is calculated for --max-epoch=10
and --max-sentences=32/64/128
depending on the task.
b) Above cmd-args and hyperparams are tested on Nvidia V100
GPU with 32gb
of memory for each task. Depending on the GPU memory resources available to you, you can use increase --update-freq
and reduce --max-sentences
.
After training the model as mentioned in previous step, you can perform inference with checkpoints in checkpoints/
directory using following python code snippet:
from fairseq.models.bart import BARTModel
bart = BARTModel.from_pretrained(
'checkpoints/',
checkpoint_file='checkpoint_best.pt',
data_name_or_path='RTE-bin'
)
label_fn = lambda label: bart.task.label_dictionary.string(
[label + bart.task.label_dictionary.nspecial]
)
ncorrect, nsamples = 0, 0
bart.cuda()
bart.eval()
with open('glue_data/RTE/dev.tsv') as fin:
fin.readline()
for index, line in enumerate(fin):
tokens = line.strip().split('\t')
sent1, sent2, target = tokens[1], tokens[2], tokens[3]
tokens = bart.encode(sent1, sent2)
prediction = bart.predict('sentence_classification_head', tokens).argmax().item()
prediction_label = label_fn(prediction)
ncorrect += int(prediction_label == target)
nsamples += 1
print('| Accuracy: ', float(ncorrect)/float(nsamples))