-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathMLP.py
173 lines (118 loc) · 4.81 KB
/
MLP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
"""
MLP on the flattened VOXELS
Usage:
- extract_path is the where the extracted data samples are available.
- checkpoint_model_path is the path where to checkpoint the trained models during the training process
EXAMPLE: SPECIFICATION
extract_path = '/Users/sandeep/Research/Ti-mmWave/data/extract/Train_Data_voxels_'
checkpoint_model_path="/Users/sandeep/Research/Ti-mmWave/data/extract/MLP"
"""
extract_path = '/Users/sandeep/Research/Ti-mmWave/data/extract/Train_Data_voxels_'
checkpoint_model_path="/Users/sandeep/Research/Ti-mmWave/data/extract/MLP"
import glob
import os
import numpy as np
# random seed.
rand_seed = 1
from numpy.random import seed
seed(rand_seed)
from tensorflow import set_random_seed
set_random_seed(rand_seed)
import keras
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, LSTM, Dense, Dropout, Flatten, Activation
from keras.layers.core import Permute, Reshape
from keras import backend as K
from keras import optimizers
from keras.optimizers import SGD
from keras.optimizers import Adam
from keras.metrics import categorical_crossentropy
from keras.layers.normalization import BatchNormalization
from keras.layers.convolutional import *
from keras.callbacks import Callback
from keras.callbacks import ModelCheckpoint
from keras.layers import Conv2D, MaxPooling2D, LSTM, Dense, Dropout, Flatten, Bidirectional,TimeDistributed
from sklearn.model_selection import train_test_split
from keras.models import load_model
sub_dirs=['boxing','jack','jump','squats','walk']
def one_hot_encoding(y_data, sub_dirs, categories=5):
Mapping=dict()
count=0
for i in sub_dirs:
Mapping[i]=count
count=count+1
y_features2=[]
for i in range(len(y_data)):
Type=y_data[i]
lab=Mapping[Type]
y_features2.append(lab)
y_features=np.array(y_features2)
y_features=y_features.reshape(y_features.shape[0],1)
from keras.utils import to_categorical
y_features = to_categorical(y_features)
return y_features
def full_3D_model(summary=False):
print('building the model ... ')
model = Sequential()
model.add(Dense(64, activation='relu', input_dim=614400))
model.add(Dropout(.5,name='dropout_1'))
model.add(Dense(128, activation='relu'))
model.add(Dropout(.5,name='dropout_2'))
model.add(Dense(128, activation='relu'))
model.add(Dropout(.5,name='dropout_3'))
model.add(Dense(64, activation='relu'))
model.add(Dropout(.5,name='dropout_4'))
model.add(Dense(5, activation='softmax', name = 'output'))
return model
frame_tog = [60]
#loading the train data
Data_path = extract_path+'boxing'
data = np.load(Data_path+'.npz')
train_data = data['arr_0']
train_data = np.array(train_data,dtype=np.dtype(np.int32))
train_label = data['arr_1']
del data
Data_path = extract_path+'jack'
data = np.load(Data_path+'.npz')
train_data = np.concatenate((train_data, data['arr_0']), axis=0)
train_label = np.concatenate((train_label, data['arr_1']), axis=0)
del data
Data_path = extract_path+'jump'
data = np.load(Data_path+'.npz')
train_data = np.concatenate((train_data, data['arr_0']), axis=0)
train_label = np.concatenate((train_label, data['arr_1']), axis=0)
del data
Data_path = extract_path+'squats'
data = np.load(Data_path+'.npz')
train_data = np.concatenate((train_data, data['arr_0']), axis=0)
train_label = np.concatenate((train_label, data['arr_1']), axis=0)
del data
Data_path = extract_path+'walk'
data = np.load(Data_path+'.npz')
train_data = np.concatenate((train_data, data['arr_0']), axis=0)
train_label = np.concatenate((train_label, data['arr_1']), axis=0)
del data
train_label = one_hot_encoding(train_label, sub_dirs, categories=5)
train_data = train_data.reshape(train_data.shape[0],train_data.shape[1]*train_data.shape[2]*train_data.shape[3]*train_data.shape[4])
print('Training Data Shape is:')
print(train_data.shape,train_label.shape)
X_train, X_val, y_train, y_val = train_test_split(train_data, train_label, test_size=0.20, random_state=1)
del train_data,train_label
model = full_3D_model()
print("Model building is completed")
adam = optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None,
decay=0.0, amsgrad=False)
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=adam,
metrics=['accuracy'])
checkpoint = ModelCheckpoint(checkpoint_model_path, monitor='val_loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [checkpoint]
# Training the model
learning_hist = model.fit(X_train, y_train,
batch_size=20,
epochs=30,
verbose=1,
shuffle=True,
validation_data=(X_val,y_val),
callbacks=callbacks_list
)