This repository has been archived by the owner on Jun 22, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 172
/
Copy pathneptune.yaml
124 lines (110 loc) · 2.8 KB
/
neptune.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
project: ORGANIZATION/home-credit
name: home-credit-default-risk
tags: [solution-3, dev]
metric:
channel: 'ROC_AUC'
goal: maximize
exclude:
- output
- notebooks
- neptune.log
- offline_job.log
- .git
- .github
- .idea
- .ipynb_checkpoints
parameters:
# Data
train_filepath: YOUR/PATH/TO/application_train.csv
test_filepath: YOUR/PATH/TO/application_test.csv
bureau_balance_filepath: YOUR/PATH/TO/bureau_balance.csv
bureau_filepath: YOUR/PATH/TO/bureau.csv
credit_card_balance_filepath: YOUR/PATH/TO/credit_card_balance.csv
installments_payments_filepath: YOUR/PATH/TO/installments_payments.csv
POS_CASH_balance_filepath: YOUR/PATH/TO/POS_CASH_balance.csv
previous_application_filepath: YOUR/PATH/TO/previous_application.csv
sample_submission_filepath: YOUR/PATH/TO/sample_submission.csv
experiment_directory: YOUR/PATH/WORKDIR
# Kaggle
kaggle_api: 0
kaggle_message: 'solution-3'
# Data preparation
n_cv_splits: 5
validation_size: 0.2
stratified_cv: True
shuffle: 1
# Execution
clean_experiment_directory_before_training: 1
num_workers: 1
verbose: 1
# Preprocessing
fill_missing: False
fill_value: None
# Light GBM
lgbm_random_search_runs: 0
lgbm__device: cpu # gpu cpu
lgbm__boosting_type: gbdt
lgbm__objective: binary
lgbm__metric: auc
lgbm__number_boosting_rounds: 500
lgbm__early_stopping_rounds: 50
lgbm__learning_rate: 0.1
lgbm__max_bin: 300
lgbm__max_depth: -1
lgbm__num_leaves: 100
lgbm__min_child_samples: 600
lgbm__subsample: 1.0
lgbm__subsample_freq: 1
lgbm__colsample_bytree: 0.1
lgbm__min_gain_to_split: 0.5
lgbm__reg_lambda: 50.0
lgbm__reg_alpha: 0.0
lgbm__scale_pos_weight: 1
# XGBoost
xgb_random_search_runs: 0
xgb__booster: gbtree
xgb__tree_method: hist # gpu_hist # auto hist
xgb__objective: binary:logistic
xgb__eval_metric: auc
xgb__nrounds: 10000
xgb__early_stopping_rounds: 100
xgb__eta: 0.001
xgb__max_leaves: 40
xgb__max_depth: 16
xgb__max_bin: 255
xgb__subsample: 0.5
xgb__colsample_bytree: 0.5
xgb__colsample_bylevel: 1
xgb__min_child_weight: 4
xgb__lambda: 0.001
xgb__alpha: 0.001
xgb__scale_pos_weight: 1
# Random forest
rf_random_search_runs: 0
rf__n_estimators: 500
rf__criterion: gini
rf__max_features: 0.2
rf__min_samples_split: 10
rf__min_samples_leaf: 5
rf__class_weight: 1
# Logistic regression
lr_random_search_runs: 0
lr__penalty: l1
lr__tol: 0.00001
lr__C: 1
lr__fit_intercept: 1
lr__class_weight: 1
lr__solver: liblinear
lr__max_iter: 10000
# SVC
svc_random_search_runs: 0
svc__kernel: rbf
svc__C: 1
svc__degree: 5
svc__gamma: auto
svc__coef0: 0.0
svc__probability: True
svc__tol: 0.00001
svc__max_iter: -1
# Postprocessing
aggregation_method: rank_mean