-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy paththickness.js
136 lines (111 loc) · 3.27 KB
/
thickness.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import { min, max } from "d3-array";
import { scaleLinear, scaleOrdinal, scaleThreshold } from "d3-scale";
import { interpolate, quantize } from "d3-interpolate";
const d3 = Object.assign(
{},
{ min, max, scaleLinear, scaleOrdinal, scaleThreshold, quantize, interpolate }
);
import * as stat from "statsbreaks";
export function thickness(data, _) {
// default
const type = _.type ? _.type : "linear";
// If static value
if (typeof _ == "number" || typeof _ == "string") {
return { getthickness: () => +_ };
}
// If no data
if (data.length == 0) {
return {
getthickness: () => 0,
valmax: 0,
sizemax: 0,
};
}
// Absolute data (linear scale)
if (typeof _ != "number" && typeof _ != "string" && type == "linear") {
let k = _.k != undefined ? _.k : 10;
let values = _.values;
let fixmax = _.fixmax != undefined ? _.fixmax : undefined;
let fixmin = _.fixmin != undefined ? _.fixmin : 0;
if ("geometry" in data[0] && "properties" in data[0]) {
data = data.map((d) => d.properties);
}
if (typeof _ == "string" || typeof _ == "number")
return {
getcol: (d) => _,
};
if (fixmin == true) {
fixmin = d3.min(data.map((d) => Math.abs(+d[values])));
}
const v =
fixmax == undefined
? d3.max(data.map((d) => Math.abs(+d[values])))
: fixmax;
const valmax = d3.max(data.map((d) => Math.abs(+d[values])));
return {
type: type,
getthickness: d3.scaleLinear().domain([fixmin, v]).range([0, k]),
valmax: valmax,
valmin: fixmin,
sizemax: d3.scaleLinear().domain([fixmin, v]).range([0, k])(valmax),
};
}
// Qualitative data (linear scale)
if (typeof _ != "number" && typeof _ != "string" && type == "quali") {
const categories = _.categories;
const k = _.k != undefined ? _.k : 10;
const sizes = _.sizes
? _.sizes
: d3.quantize(d3.interpolate(1, k), categories.length);
return {
type: type,
categories: categories,
sizes: sizes,
getthickness: d3
.scaleOrdinal()
.domain(categories)
.range(sizes)
.unknown(0),
};
}
// Relative data
if (typeof _ != "number" && typeof _ != "string" && type == "discr") {
const values = _.values;
let sizes = _.sizes;
let nbreaks = _.nbreaks != undefined ? _.nbreaks : 5;
let breaks = _.breaks ? _.breaks : null;
let k = _.k != undefined ? _.k : 10;
let nbsd = _.nbsd != undefined ? _.nbsd : 1;
let middle = _.middle == true ? true : false;
let method = _.method ? _.method : "quantile";
if (method == "q6") {
nbreaks = 6;
}
const val = data
.map((d) => +d.properties[values])
.filter((d) => d != undefined && d != null && d != "");
if (breaks == null) {
breaks = stat.breaks(val, {
method: method,
nb: nbreaks,
k: nbsd,
middle: middle,
//precision: leg_round
});
} else {
breaks = d3.sort(breaks);
}
if (sizes == null) {
sizes = d3.quantize(d3.interpolate(1, k), breaks.length - 1);
}
let b = [...breaks];
b.pop();
b.shift();
return {
type: type,
breaks: breaks,
sizes: sizes,
getthickness: d3.scaleThreshold(b, sizes).unknown(0),
};
}
}