|
| 1 | +import argparse |
| 2 | +from timeit import default_timer as timer |
| 3 | +from typing import List |
| 4 | + |
| 5 | +import numpy as np |
| 6 | +import pandas as pd |
| 7 | +import torch |
| 8 | +from flair.datasets import CONLL_03_DUTCH |
| 9 | +from loguru import logger |
| 10 | +from tqdm import tqdm |
| 11 | + |
| 12 | +from deidentify.base import Document |
| 13 | +from deidentify.taggers import CRFTagger, DeduceTagger, FlairTagger, TextTagger |
| 14 | +from deidentify.tokenizer import TokenizerFactory |
| 15 | + |
| 16 | +N_REPETITIONS = 5 |
| 17 | +N_SENTS = 5000 |
| 18 | + |
| 19 | + |
| 20 | +def load_data(): |
| 21 | + corpus = CONLL_03_DUTCH() |
| 22 | + sentences = corpus.train[:N_SENTS] |
| 23 | + tokens = sum(len(sent) for sent in sentences) |
| 24 | + docs = [Document(name='', text=sent.to_plain_string(), annotations=[]) for sent in sentences] |
| 25 | + return docs, tokens |
| 26 | + |
| 27 | + |
| 28 | +def benchmark_tagger(tagger: TextTagger, docs: List[Document], num_tokens: int): |
| 29 | + durations = [] |
| 30 | + |
| 31 | + for _ in tqdm(range(0, N_REPETITIONS), desc='Repetitions'): |
| 32 | + start = timer() |
| 33 | + tagger.annotate(docs) |
| 34 | + end = timer() |
| 35 | + durations.append(end - start) |
| 36 | + |
| 37 | + if isinstance(tagger, FlairTagger) and torch.cuda.is_available(): |
| 38 | + torch.cuda.empty_cache() |
| 39 | + |
| 40 | + return { |
| 41 | + 'mean': np.mean(durations), |
| 42 | + 'std': np.std(durations), |
| 43 | + 'tokens/s': num_tokens / np.mean(durations), |
| 44 | + 'docs/s': len(docs) / np.mean(durations), |
| 45 | + 'num_docs': len(docs), |
| 46 | + 'num_tokens': num_tokens |
| 47 | + } |
| 48 | + |
| 49 | + |
| 50 | +def main(args): |
| 51 | + logger.info('Load data...') |
| 52 | + documents, num_tokens = load_data() |
| 53 | + |
| 54 | + logger.info('Initialize taggers...') |
| 55 | + tokenizer_crf = TokenizerFactory().tokenizer(corpus='ons', disable=()) |
| 56 | + tokenizer_bilstm = TokenizerFactory().tokenizer(corpus='ons', disable=("tagger", "ner")) |
| 57 | + |
| 58 | + taggers = [ |
| 59 | + ('DEDUCE', DeduceTagger(verbose=True)), |
| 60 | + ('CRF', CRFTagger( |
| 61 | + model='model_crf_ons_tuned-v0.1.0', |
| 62 | + tokenizer=tokenizer_crf, |
| 63 | + verbose=True |
| 64 | + )), |
| 65 | + ('BiLSTM-CRF (large)', FlairTagger( |
| 66 | + model='model_bilstmcrf_ons_large-v0.1.0', |
| 67 | + tokenizer=tokenizer_bilstm, |
| 68 | + mini_batch_size=args.bilstmcrf_large_batch_size, |
| 69 | + verbose=True |
| 70 | + )), |
| 71 | + ('BiLSTM-CRF (fast)', FlairTagger( |
| 72 | + model='model_bilstmcrf_ons_fast-v0.1.0', |
| 73 | + tokenizer=tokenizer_bilstm, |
| 74 | + mini_batch_size=args.bilstmcrf_fast_batch_size, |
| 75 | + verbose=True |
| 76 | + )) |
| 77 | + ] |
| 78 | + |
| 79 | + benchmark_results = [] |
| 80 | + tagger_names = [] |
| 81 | + for tagger_name, tagger in taggers: |
| 82 | + logger.info(f'Benchmark inference for tagger: {tagger_name}') |
| 83 | + scores = benchmark_tagger(tagger, documents, num_tokens) |
| 84 | + benchmark_results.append(scores) |
| 85 | + tagger_names.append(tagger_name) |
| 86 | + |
| 87 | + df = pd.DataFrame(data=benchmark_results, index=tagger_names) |
| 88 | + df.to_csv(f'{args.benchmark_name}.csv') |
| 89 | + logger.info('\n{}', df) |
| 90 | + |
| 91 | + |
| 92 | +def arg_parser(): |
| 93 | + parser = argparse.ArgumentParser() |
| 94 | + parser.add_argument("benchmark_name", type=str, help="Name of the benchmark.") |
| 95 | + parser.add_argument( |
| 96 | + "--bilstmcrf_large_batch_size", |
| 97 | + type=int, |
| 98 | + help="Batch size to use with the large model.", |
| 99 | + default=256 |
| 100 | + ) |
| 101 | + parser.add_argument( |
| 102 | + "--bilstmcrf_fast_batch_size", |
| 103 | + type=int, |
| 104 | + help="Batch size to use with the fast model.", |
| 105 | + default=256 |
| 106 | + ) |
| 107 | + return parser.parse_args() |
| 108 | + |
| 109 | + |
| 110 | +if __name__ == '__main__': |
| 111 | + main(arg_parser()) |
0 commit comments