Skip to content

Commit 37b58aa

Browse files
committed
add ed25519 code to libunet
Signed-off-by: Felix Fietkau <[email protected]>
1 parent 3e1d996 commit 37b58aa

11 files changed

+1529
-1
lines changed

CMakeLists.txt

+1-1
Original file line numberDiff line numberDiff line change
@@ -30,7 +30,7 @@ ELSE()
3030
SET(ubus "")
3131
ENDIF()
3232

33-
ADD_LIBRARY(unet SHARED curve25519.c siphash.c)
33+
ADD_LIBRARY(unet SHARED curve25519.c siphash.c sha512.c fprime.c f25519.c ed25519.c edsign.c)
3434
TARGET_LINK_LIBRARIES(unet ubox)
3535

3636
ADD_EXECUTABLE(unetd ${SOURCES})

ed25519.c

+320
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,320 @@
1+
/* Edwards curve operations
2+
* Daniel Beer <[email protected]>, 9 Jan 2014
3+
*
4+
* This file is in the public domain.
5+
*/
6+
7+
#include "ed25519.h"
8+
9+
/* Base point is (numbers wrapped):
10+
*
11+
* x = 151122213495354007725011514095885315114
12+
* 54012693041857206046113283949847762202
13+
* y = 463168356949264781694283940034751631413
14+
* 07993866256225615783033603165251855960
15+
*
16+
* y is derived by transforming the original Montgomery base (u=9). x
17+
* is the corresponding positive coordinate for the new curve equation.
18+
* t is x*y.
19+
*/
20+
const struct ed25519_pt ed25519_base = {
21+
.x = {
22+
0x1a, 0xd5, 0x25, 0x8f, 0x60, 0x2d, 0x56, 0xc9,
23+
0xb2, 0xa7, 0x25, 0x95, 0x60, 0xc7, 0x2c, 0x69,
24+
0x5c, 0xdc, 0xd6, 0xfd, 0x31, 0xe2, 0xa4, 0xc0,
25+
0xfe, 0x53, 0x6e, 0xcd, 0xd3, 0x36, 0x69, 0x21
26+
},
27+
.y = {
28+
0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
29+
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
30+
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
31+
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66
32+
},
33+
.t = {
34+
0xa3, 0xdd, 0xb7, 0xa5, 0xb3, 0x8a, 0xde, 0x6d,
35+
0xf5, 0x52, 0x51, 0x77, 0x80, 0x9f, 0xf0, 0x20,
36+
0x7d, 0xe3, 0xab, 0x64, 0x8e, 0x4e, 0xea, 0x66,
37+
0x65, 0x76, 0x8b, 0xd7, 0x0f, 0x5f, 0x87, 0x67
38+
},
39+
.z = {1, 0}
40+
};
41+
42+
static const struct ed25519_pt ed25519_neutral = {
43+
.x = {0},
44+
.y = {1, 0},
45+
.t = {0},
46+
.z = {1, 0}
47+
};
48+
49+
/* Conversion to and from projective coordinates */
50+
void ed25519_project(struct ed25519_pt *p,
51+
const uint8_t *x, const uint8_t *y)
52+
{
53+
f25519_copy(p->x, x);
54+
f25519_copy(p->y, y);
55+
f25519_load(p->z, 1);
56+
f25519_mul__distinct(p->t, x, y);
57+
}
58+
59+
void ed25519_unproject(uint8_t *x, uint8_t *y,
60+
const struct ed25519_pt *p)
61+
{
62+
uint8_t z1[F25519_SIZE];
63+
64+
f25519_inv__distinct(z1, p->z);
65+
f25519_mul__distinct(x, p->x, z1);
66+
f25519_mul__distinct(y, p->y, z1);
67+
68+
f25519_normalize(x);
69+
f25519_normalize(y);
70+
}
71+
72+
/* Compress/uncompress points. We compress points by storing the x
73+
* coordinate and the parity of the y coordinate.
74+
*
75+
* Rearranging the curve equation, we obtain explicit formulae for the
76+
* coordinates:
77+
*
78+
* x = sqrt((y^2-1) / (1+dy^2))
79+
* y = sqrt((x^2+1) / (1-dx^2))
80+
*
81+
* Where d = (-121665/121666), or:
82+
*
83+
* d = 370957059346694393431380835087545651895
84+
* 42113879843219016388785533085940283555
85+
*/
86+
87+
static const uint8_t ed25519_d[F25519_SIZE] = {
88+
0xa3, 0x78, 0x59, 0x13, 0xca, 0x4d, 0xeb, 0x75,
89+
0xab, 0xd8, 0x41, 0x41, 0x4d, 0x0a, 0x70, 0x00,
90+
0x98, 0xe8, 0x79, 0x77, 0x79, 0x40, 0xc7, 0x8c,
91+
0x73, 0xfe, 0x6f, 0x2b, 0xee, 0x6c, 0x03, 0x52
92+
};
93+
94+
void ed25519_pack(uint8_t *c, const uint8_t *x, const uint8_t *y)
95+
{
96+
uint8_t tmp[F25519_SIZE];
97+
uint8_t parity;
98+
99+
f25519_copy(tmp, x);
100+
f25519_normalize(tmp);
101+
parity = (tmp[0] & 1) << 7;
102+
103+
f25519_copy(c, y);
104+
f25519_normalize(c);
105+
c[31] |= parity;
106+
}
107+
108+
uint8_t ed25519_try_unpack(uint8_t *x, uint8_t *y, const uint8_t *comp)
109+
{
110+
const int parity = comp[31] >> 7;
111+
uint8_t a[F25519_SIZE];
112+
uint8_t b[F25519_SIZE];
113+
uint8_t c[F25519_SIZE];
114+
115+
/* Unpack y */
116+
f25519_copy(y, comp);
117+
y[31] &= 127;
118+
119+
/* Compute c = y^2 */
120+
f25519_mul__distinct(c, y, y);
121+
122+
/* Compute b = (1+dy^2)^-1 */
123+
f25519_mul__distinct(b, c, ed25519_d);
124+
f25519_add(a, b, f25519_one);
125+
f25519_inv__distinct(b, a);
126+
127+
/* Compute a = y^2-1 */
128+
f25519_sub(a, c, f25519_one);
129+
130+
/* Compute c = a*b = (y^2-1)/(1-dy^2) */
131+
f25519_mul__distinct(c, a, b);
132+
133+
/* Compute a, b = +/-sqrt(c), if c is square */
134+
f25519_sqrt(a, c);
135+
f25519_neg(b, a);
136+
137+
/* Select one of them, based on the compressed parity bit */
138+
f25519_select(x, a, b, (a[0] ^ parity) & 1);
139+
140+
/* Verify that x^2 = c */
141+
f25519_mul__distinct(a, x, x);
142+
f25519_normalize(a);
143+
f25519_normalize(c);
144+
145+
return f25519_eq(a, c);
146+
}
147+
148+
/* k = 2d */
149+
static const uint8_t ed25519_k[F25519_SIZE] = {
150+
0x59, 0xf1, 0xb2, 0x26, 0x94, 0x9b, 0xd6, 0xeb,
151+
0x56, 0xb1, 0x83, 0x82, 0x9a, 0x14, 0xe0, 0x00,
152+
0x30, 0xd1, 0xf3, 0xee, 0xf2, 0x80, 0x8e, 0x19,
153+
0xe7, 0xfc, 0xdf, 0x56, 0xdc, 0xd9, 0x06, 0x24
154+
};
155+
156+
void ed25519_add(struct ed25519_pt *r,
157+
const struct ed25519_pt *p1, const struct ed25519_pt *p2)
158+
{
159+
/* Explicit formulas database: add-2008-hwcd-3
160+
*
161+
* source 2008 Hisil--Wong--Carter--Dawson,
162+
* http://eprint.iacr.org/2008/522, Section 3.1
163+
* appliesto extended-1
164+
* parameter k
165+
* assume k = 2 d
166+
* compute A = (Y1-X1)(Y2-X2)
167+
* compute B = (Y1+X1)(Y2+X2)
168+
* compute C = T1 k T2
169+
* compute D = Z1 2 Z2
170+
* compute E = B - A
171+
* compute F = D - C
172+
* compute G = D + C
173+
* compute H = B + A
174+
* compute X3 = E F
175+
* compute Y3 = G H
176+
* compute T3 = E H
177+
* compute Z3 = F G
178+
*/
179+
uint8_t a[F25519_SIZE];
180+
uint8_t b[F25519_SIZE];
181+
uint8_t c[F25519_SIZE];
182+
uint8_t d[F25519_SIZE];
183+
uint8_t e[F25519_SIZE];
184+
uint8_t f[F25519_SIZE];
185+
uint8_t g[F25519_SIZE];
186+
uint8_t h[F25519_SIZE];
187+
188+
/* A = (Y1-X1)(Y2-X2) */
189+
f25519_sub(c, p1->y, p1->x);
190+
f25519_sub(d, p2->y, p2->x);
191+
f25519_mul__distinct(a, c, d);
192+
193+
/* B = (Y1+X1)(Y2+X2) */
194+
f25519_add(c, p1->y, p1->x);
195+
f25519_add(d, p2->y, p2->x);
196+
f25519_mul__distinct(b, c, d);
197+
198+
/* C = T1 k T2 */
199+
f25519_mul__distinct(d, p1->t, p2->t);
200+
f25519_mul__distinct(c, d, ed25519_k);
201+
202+
/* D = Z1 2 Z2 */
203+
f25519_mul__distinct(d, p1->z, p2->z);
204+
f25519_add(d, d, d);
205+
206+
/* E = B - A */
207+
f25519_sub(e, b, a);
208+
209+
/* F = D - C */
210+
f25519_sub(f, d, c);
211+
212+
/* G = D + C */
213+
f25519_add(g, d, c);
214+
215+
/* H = B + A */
216+
f25519_add(h, b, a);
217+
218+
/* X3 = E F */
219+
f25519_mul__distinct(r->x, e, f);
220+
221+
/* Y3 = G H */
222+
f25519_mul__distinct(r->y, g, h);
223+
224+
/* T3 = E H */
225+
f25519_mul__distinct(r->t, e, h);
226+
227+
/* Z3 = F G */
228+
f25519_mul__distinct(r->z, f, g);
229+
}
230+
231+
static void ed25519_double(struct ed25519_pt *r, const struct ed25519_pt *p)
232+
{
233+
/* Explicit formulas database: dbl-2008-hwcd
234+
*
235+
* source 2008 Hisil--Wong--Carter--Dawson,
236+
* http://eprint.iacr.org/2008/522, Section 3.3
237+
* compute A = X1^2
238+
* compute B = Y1^2
239+
* compute C = 2 Z1^2
240+
* compute D = a A
241+
* compute E = (X1+Y1)^2-A-B
242+
* compute G = D + B
243+
* compute F = G - C
244+
* compute H = D - B
245+
* compute X3 = E F
246+
* compute Y3 = G H
247+
* compute T3 = E H
248+
* compute Z3 = F G
249+
*/
250+
uint8_t a[F25519_SIZE];
251+
uint8_t b[F25519_SIZE];
252+
uint8_t c[F25519_SIZE];
253+
uint8_t e[F25519_SIZE];
254+
uint8_t f[F25519_SIZE];
255+
uint8_t g[F25519_SIZE];
256+
uint8_t h[F25519_SIZE];
257+
258+
/* A = X1^2 */
259+
f25519_mul__distinct(a, p->x, p->x);
260+
261+
/* B = Y1^2 */
262+
f25519_mul__distinct(b, p->y, p->y);
263+
264+
/* C = 2 Z1^2 */
265+
f25519_mul__distinct(c, p->z, p->z);
266+
f25519_add(c, c, c);
267+
268+
/* D = a A (alter sign) */
269+
/* E = (X1+Y1)^2-A-B */
270+
f25519_add(f, p->x, p->y);
271+
f25519_mul__distinct(e, f, f);
272+
f25519_sub(e, e, a);
273+
f25519_sub(e, e, b);
274+
275+
/* G = D + B */
276+
f25519_sub(g, b, a);
277+
278+
/* F = G - C */
279+
f25519_sub(f, g, c);
280+
281+
/* H = D - B */
282+
f25519_neg(h, b);
283+
f25519_sub(h, h, a);
284+
285+
/* X3 = E F */
286+
f25519_mul__distinct(r->x, e, f);
287+
288+
/* Y3 = G H */
289+
f25519_mul__distinct(r->y, g, h);
290+
291+
/* T3 = E H */
292+
f25519_mul__distinct(r->t, e, h);
293+
294+
/* Z3 = F G */
295+
f25519_mul__distinct(r->z, f, g);
296+
}
297+
298+
void ed25519_smult(struct ed25519_pt *r_out, const struct ed25519_pt *p,
299+
const uint8_t *e)
300+
{
301+
struct ed25519_pt r;
302+
int i;
303+
304+
ed25519_copy(&r, &ed25519_neutral);
305+
306+
for (i = 255; i >= 0; i--) {
307+
const uint8_t bit = (e[i >> 3] >> (i & 7)) & 1;
308+
struct ed25519_pt s;
309+
310+
ed25519_double(&r, &r);
311+
ed25519_add(&s, &r, p);
312+
313+
f25519_select(r.x, r.x, s.x, bit);
314+
f25519_select(r.y, r.y, s.y, bit);
315+
f25519_select(r.z, r.z, s.z, bit);
316+
f25519_select(r.t, r.t, s.t, bit);
317+
}
318+
319+
ed25519_copy(r_out, &r);
320+
}

0 commit comments

Comments
 (0)