-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathinception_model.lua
93 lines (75 loc) · 2.88 KB
/
inception_model.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
require 'cunn'
require 'ccn2'
require 'lib/SpatialAveragePooling'
-- Inception Architecture
-- NOTICE: This code did not test enough yet. This implementation doesn't have auxiliary classifiers. It gives me accuracy of 88%. I didn't use this model in kaggle CIFAR-10 competition.
-- inception 1x1,1x1+3x3,1x1+5x5,poolproj module
function inception_module(depth_dim, input_size, config)
local conv1 = nil
local conv3 = nil
local conv5 = nil
local pool = nil
local depth_concat = nn.DepthConcat(depth_dim)
conv1 = nn.Sequential()
conv1:add(nn.SpatialConvolutionMM(input_size, config[1][1], 1, 1))
conv1:add(nn.ReLU())
depth_concat:add(conv1)
conv3 = nn.Sequential()
conv3:add(nn.SpatialConvolutionMM(input_size, config[2][1], 1, 1))
conv3:add(nn.ReLU())
conv3:add(nn.SpatialConvolutionMM(config[2][1], config[2][2], 3, 3))
conv3:add(nn.ReLU())
depth_concat:add(conv3)
conv5 = nn.Sequential()
conv5:add(nn.SpatialConvolutionMM(input_size, config[3][1], 1, 1))
conv5:add(nn.ReLU())
conv5:add(nn.SpatialConvolutionMM(config[3][1], config[3][2], 5, 5))
conv5:add(nn.ReLU())
depth_concat:add(conv5)
pool = nn.Sequential()
pool:add(nn.SpatialMaxPooling(config[4][1], config[4][1], 1, 1))
pool:add(nn.SpatialConvolutionMM(input_size, config[4][2], 1, 1))
pool:add(nn.ReLU())
depth_concat:add(pool)
return depth_concat
end
function inception_model() -- validate.lua Acc:
local model = nn.Sequential()
-- first convolution layer (VGG configuration)
model:add(nn.SpatialConvolutionMM(3, 64, 3, 3, 1, 1, 1))
model:add(nn.ReLU())
model:add(nn.SpatialConvolutionMM(64, 64, 3, 3, 1, 1, 1))
model:add(nn.ReLU())
model:add(nn.SpatialMaxPooling(2, 2, 2, 2))
-- inception 3a
model:add(inception_module(2, 64, {{64}, {96, 128}, {16, 32}, {3, 32}}))
-- inception 3b
model:add(inception_module(2, 256, {{128}, {128, 192}, {32, 96}, {3, 64}}))
-- maxpool
model:add(nn.SpatialMaxPooling(2, 2, 2, 2))
-- inception 4a
model:add(inception_module(2, 480, {{192}, {96, 208}, {16, 48}, {3, 64}}))
-- inception 4b
model:add(inception_module(2, 512, {{160}, {112, 224}, {24, 64}, {3, 64}}))
-- inception 4c
model:add(inception_module(2, 512, {{128}, {128, 256}, {24, 64}, {3, 64}}))
-- inception 4d
--model:add(inception_module(2, 512, {{112}, {144, 288}, {32, 64}, {3, 64}}))
-- inception 4e
--model:add(inception_module(2, 528, {{256}, {160, 320}, {32, 128}, {3, 128}}))
-- global avgpool
model:add(nn.MySpatialAveragePooling(512, 6, 6, 6, 6))
model:add(nn.Dropout(0.4))
model:add(nn.SpatialConvolutionMM(512, 10, 1, 1, 1, 1))
model:add(nn.Reshape(10))
model:add(nn.SoftMax())
return model
end
--[[
model = inception_model()
model:cuda()
x = torch.Tensor(64, 3, 24, 24):uniform():cuda()
z = model:forward(x)
print(z:size())
print(model:backward(x, z):size())
--]]