-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_pl_ft_random.py
554 lines (431 loc) · 27.3 KB
/
main_pl_ft_random.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
import os
import argparse
from datetime import datetime
from loguru import logger
import matplotlib.pyplot as plt
import numpy as np
from tqdm import tqdm
import wandb
import torch
import pytorch_lightning as pl
from ivadomed.losses import DiceLoss as ivadoDiceLoss
from ivadomed.metrics import precision_score, recall_score
from monai.utils import set_determinism
from monai.losses import DiceCELoss, DiceLoss, FocalLoss
from monai.inferers import sliding_window_inference
from monai.networks.nets import UNet, AttentionUnet, BasicUNet, SegResNet
from monai.data import (DataLoader, Dataset, CacheDataset, load_decathlon_datalist, decollate_batch,)
from monai.transforms import (AddChanneld, Compose, CropForegroundd, LoadImaged, RandFlipd,
RandCropByPosNegLabeld, Spacingd, RandRotate90d, ToTensord, SpatialPadd, NormalizeIntensityd,
EnsureType, RandWeightedCropd, HistogramNormalized, EnsureTyped, Invertd, SaveImaged)
def get_test_datasets(centers_list, root, test_transforms, seed):
datasets = []
for center in centers_list:
create_datalist_cmd = '%s %s -se %d -ncv 0 -dr %s -ds %s'
os.system(create_datalist_cmd % (
'python', './utils/create_json_data.py', seed,
'/home/GRAMES.POLYMTL.CA/u114716/duke/projects/ms_brain_spine/data_processing',
f"{center}")
)
dataset_name = root + f"dataset_{center}.json"
test_files = load_decathlon_datalist(dataset_name, True, "test")
datasets.append(Dataset(data=test_files, transform=test_transforms))
return datasets
# create a "model"-agnostic class with PL to use different models on both datasets
class Model(pl.LightningModule):
def __init__(self, args, centers_list, center_name, data_root, optimizer_class, load_pretrained=False,
load_path=None, exp_id=None):
super().__init__()
self.args = args
self.save_hyperparameters()
if self.args.unet_depth == 3:
from models import ModifiedUNet3DEncoder, ModifiedUNet3DDecoder # this is 3-level UNet
logger.info("Using UNet with Depth = 3! ")
else:
from models_original import ModifiedUNet3DEncoder, ModifiedUNet3DDecoder
logger.info("Using UNet with Depth = 4! ")
self.load_pretrained = load_pretrained
self.center_name = center_name
self.centers_list = centers_list
self.root = data_root
self.lr = args.learning_rate
self.loss_function = ivadoDiceLoss(smooth=1.0)
self.optimizer_class = optimizer_class
self.save_exp_id = exp_id
self.center_idx = centers_list.index(center_name)
# instantiate the model
if not self.load_pretrained:
logger.info("INITIALIZING ENCODER WEIGHTS FROM SCRATCH!")
self.encoder = ModifiedUNet3DEncoder(in_channels=1, base_n_filter=args.init_filters, attention=False)
else:
logger.info(f"LOADING PRETRAINED WEIGHTS FOR THE ENCODER TRAINED ON { centers_list[self.center_idx - 1] }!")
self.encoder = ModifiedUNet3DEncoder(in_channels=1, base_n_filter=args.init_filters, attention=False)
self.encoder.load_state_dict(torch.load(load_path))
self.encoder.eval()
self.decoder = ModifiedUNet3DDecoder(n_classes=1, base_n_filter=args.init_filters)
self.best_val_dice, self.best_val_epoch = 0, 0
self.metric_values = []
self.epoch_losses, self.epoch_soft_dice_train, self.epoch_hard_dice_train = [], [], []
# define cropping and padding dimensions
self.voxel_cropping_size = (args.patch_size,) * 3
self.inference_roi_size = (args.patch_size,) * 3
# define post-processing transforms for validation, nothing fancy just making sure that it's a tensor (default)
self.val_post_pred = Compose([EnsureType()])
self.val_post_label = Compose([EnsureType()])
# define evaluation metric
self.ivado_dice_metric = ivadoDiceLoss(smooth=1.0)
# # Get the ANIMA binaries path
# cmd = r'''grep "^anima = " ~/.anima_4.1.1/config.txt | sed "s/.* = //"'''
# self.anima_binaries_path = subprocess.check_output(cmd, shell=True).decode('utf-8').strip('\n')
# print('ANIMA Binaries Path: ', self.anima_binaries_path)
def forward(self, x):
x, context_features = self.encoder(x)
preds = self.decoder(x, context_features)
return preds
def prepare_data(self):
# set deterministic training for reproducibility
set_determinism(seed=self.args.seed)
# define training and validation transforms
train_transforms = Compose([
LoadImaged(keys=["image", "label"]),
AddChanneld(keys=["image", "label"]),
# Orientationd(keys=["image", "label"], axcodes="RAS"),
CropForegroundd(keys=["image", "label"], source_key="image"), # crops >0 values with a bounding box
RandCropByPosNegLabeld(keys=["image", "label"], label_key="label", spatial_size=self.voxel_cropping_size,
pos=1, neg=1, num_samples=args.num_samples_per_volume,
# if num_samples=4, then 4 samples/image are randomly generated
image_key="image", image_threshold=0.),
RandFlipd(keys=["image", "label"], spatial_axis=[0], prob=0.50,),
RandFlipd(keys=["image", "label"], spatial_axis=[1], prob=0.50,),
RandFlipd(keys=["image", "label"],spatial_axis=[2],prob=0.50,),
RandRotate90d(keys=["image", "label"], prob=0.10, max_k=3,),
HistogramNormalized(keys=["image"], mask=None),
NormalizeIntensityd(keys=["image"], nonzero=False, channel_wise=True),
ToTensord(keys=["image", "label"]),
])
val_transforms = Compose([
LoadImaged(keys=["image", "label"]),
AddChanneld(keys=["image", "label"]),
CropForegroundd(keys=["image", "label"], source_key="image"),
HistogramNormalized(keys=["image"], mask=None),
NormalizeIntensityd(keys=["image"], nonzero=False, channel_wise=True),
ToTensord(keys=["image", "label"]),
])
create_datalist_cmd = '%s %s -se %d -ncv 0 -dr %s -ds %s'
os.system(
create_datalist_cmd % ('python', './utils/create_json_data.py', self.args.seed,
'/home/GRAMES.POLYMTL.CA/u114716/duke/projects/ms_brain_spine/data_processing',
f"{self.center_name}")
)
# load the dataset of the center
dataset = self.root + f"dataset_{self.center_name}.json"
train_files = load_decathlon_datalist(dataset, True, "training")
# use the last 5 training subjects for validation and rest for training
val_files = train_files[-5:]
train_files = train_files[:-5]
self.train_ds = CacheDataset(data=train_files, transform=train_transforms, cache_rate=0.25, num_workers=4)
self.val_ds = CacheDataset(data=val_files, transform=val_transforms, cache_rate=1.0, num_workers=4)
# load these only during testing
test_transforms = Compose([
LoadImaged(keys=["image", "label"]),
AddChanneld(keys=["image", "label"]),
HistogramNormalized(keys=["image"], mask=None),
NormalizeIntensityd(keys=["image"], nonzero=False, channel_wise=True),
ToTensord(keys=["image", "label"]),
])
# define post-processing transforms for testing; taken (with explanations) from
# https://github.com/Project-MONAI/tutorials/blob/main/3d_segmentation/torch/unet_inference_dict.py#L66
self.test_post_pred = Compose([
EnsureTyped(keys=["pred", "label"]),
Invertd(keys="pred", transform=test_transforms, orig_keys="image", meta_keys="pred_meta_dict",
orig_meta_keys=["image_meta_dict"], meta_key_postfix="meta_dict", nearest_interp=False, to_tensor=True),
])
self.test_datasets_list = get_test_datasets(self.centers_list, self.root, test_transforms, self.args.seed)
logger.info(f"Loading dataset from center: {self.center_name} ")
def train_dataloader(self):
# NOTE: if num_samples=4 in RandCropByPosNegLabeld and batch_size=2, then 2 x 4 images are generated for network training
return DataLoader(self.train_ds, batch_size=args.batch_size, shuffle=True, num_workers=4, pin_memory=True,)
def val_dataloader(self):
return DataLoader(self.val_ds, batch_size=1, shuffle=False, num_workers=4, pin_memory=True,)
def test_dataloader(self):
test_dataloaders_list = []
for i in range(len(self.test_datasets_list)):
test_dataloaders_list.append(
DataLoader(self.test_datasets_list[i], batch_size=1, shuffle=False, num_workers=4, pin_memory=True, )
)
return test_dataloaders_list
def configure_optimizers(self):
optimizer = self.optimizer_class(self.parameters(), lr=self.lr, weight_decay=1e-5)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=50, gamma=0.5)
return [optimizer], [scheduler]
def training_step(self, batch, batch_idx):
inputs, labels = batch["image"], batch["label"]
output = self.forward(inputs)
# calculate training loss
# ivadomed dice loss returns - 2.0 x ...., so we first make it positive and subtract from 1.0
loss = 1.0 - (self.loss_function(output, labels) * -1.0)
# calculate train dice
# NOTE: this is done on patches (and not entire 3D volume) because SlidingWindowInference is not used here
train_soft_dice = self.ivado_dice_metric(output, labels)
train_hard_dice = self.ivado_dice_metric((output.detach() > 0.5).float(), (labels.detach() > 0.5).float())
return {
"loss": loss,
"train_soft_dice": train_soft_dice,
"train_hard_dice": train_hard_dice,
"train_number": len(inputs)
}
def training_epoch_end(self, outputs):
avg_loss = torch.stack([x["loss"] for x in outputs]).mean()
avg_soft_dice_train = torch.stack([x["train_soft_dice"] for x in outputs]).mean()
avg_hard_dice_train = torch.stack([x["train_hard_dice"] for x in outputs]).mean()
self.log('train_soft_dice', avg_soft_dice_train, on_step=False, on_epoch=True)
self.epoch_losses.append(avg_loss.detach().cpu().numpy())
self.epoch_soft_dice_train.append(avg_soft_dice_train.detach().cpu().numpy())
self.epoch_hard_dice_train.append(avg_hard_dice_train.detach().cpu().numpy())
def validation_step(self, batch, batch_idx):
inputs, labels = batch["image"], batch["label"]
inference_roi_size = self.inference_roi_size
sw_batch_size = 4
outputs = sliding_window_inference(inputs, inference_roi_size, sw_batch_size, self.forward, overlap=0.5,)
# outputs shape: (B, C, <original H x W x D>)
# calculate validation loss
# ivadomed dice loss returns - 2.0 x ...., so we first make it positive and subtract from 1.0
loss = 1.0 - (self.loss_function(outputs, labels) * -1.0)
# post-process for calculating the evaluation metric
post_outputs = [self.val_post_pred(i) for i in decollate_batch(outputs)]
post_labels = [self.val_post_label(i) for i in decollate_batch(labels)]
# post_outputs shape = post_labels shape = (C, <original H x W x D>)
val_soft_dice = -1.0 * self.ivado_dice_metric(post_outputs[0], post_labels[0])
val_hard_dice = -1.0 * self.ivado_dice_metric((post_outputs[0].detach() > 0.5).float(), (post_labels[0].detach() > 0.5).float())
return {
"val_loss": loss,
"val_soft_dice": val_soft_dice,
"val_hard_dice": val_hard_dice,
"val_number": len(post_outputs),
}
def validation_epoch_end(self, outputs):
val_loss, num_val_items, val_soft_dice, val_hard_dice = 0, 0, 0.0, 0.0
for output in outputs:
val_loss += output["val_loss"].sum().item()
val_soft_dice += output["val_soft_dice"].sum().item()
val_hard_dice += output["val_hard_dice"].sum().item()
num_val_items += output["val_number"]
mean_val_loss = torch.tensor(val_loss / num_val_items)
mean_val_soft_dice = torch.tensor(val_soft_dice / num_val_items)
mean_val_hard_dice = torch.tensor(val_hard_dice / num_val_items)
wandb_logs = {
"val_soft_dice": mean_val_soft_dice,
"val_hard_dice": mean_val_hard_dice,
"val_loss": mean_val_loss,
}
if mean_val_soft_dice > self.best_val_dice:
self.best_val_dice = mean_val_soft_dice
self.best_val_epoch = self.current_epoch
logger.info(
f"Current epoch: {self.current_epoch}"
f"\nCurrent Mean Soft Dice: {mean_val_soft_dice:.4f}"
f"\nCurrent Mean Hard Dice: {mean_val_hard_dice:.4f}"
f"\nBest Mean Dice: {self.best_val_dice:.4f} at Epoch: {self.best_val_epoch}"
f"\n----------------------------------------------------")
self.metric_values.append(mean_val_soft_dice)
# log on to wandb
self.log_dict(wandb_logs)
return {"log": wandb_logs}
def test_step(self, batch, batch_idx, dataloader_idx):
# Sequentially computes the things below for each dataloader
test_input, test_label = batch["image"], batch["label"]
roi_size = self.inference_roi_size
sw_batch_size = 4
batch["pred"] = sliding_window_inference(test_input, roi_size, sw_batch_size, self.forward, overlap=0.5)
# upon fsleyes visualization, observed that very small values need to be set to zero, but NOT fully binarizing d
# the pred for better visualization
batch["pred"][batch["pred"] < 0.099] = 0.0
post_test_out = [self.test_post_pred(i) for i in decollate_batch(batch)]
# NOTE: exceptionally for this ms_brain_spine dataset, we're using this method to save the images. This is because
# the dataset is not bidsified, i.e. the subject names do not appear in the file names due to which, they are
# overwritten when included in test_post_pred.
# Using nib.save() as done in original ms-challenge seems to mess up outputs for some reason
# subject_name = (batch["label_meta_dict"]["filename_or_obj"][0]).split(os.sep)[9]
# self.predictions_save_path = os.path.join(
# self.args.results_dir, centers_order, f"seed={self.args.seed}", self.save_exp_id
# )
# save_transform = Compose([
# # AsDiscreted(keys="pred", argmax=False, threshold=0.1), #, to_onehot=2), ANIMA only needs binary predictions
# # NOTE: despite the small threshold, it just binarizes everything, hence not using
# SaveImaged(keys="pred", meta_keys="image_meta_dict", output_dir=os.path.join(self.predictions_save_path, subject_name),
# output_postfix="pred", resample=False),
# SaveImaged(keys="label", meta_keys="image_meta_dict", output_dir=os.path.join(self.predictions_save_path, subject_name),
# output_postfix="gt", resample=False),
# ])
# post_test_out = [save_transform(i) for i in decollate_batch(batch)]
# make sure that the shapes of prediction and GT label are the same
assert post_test_out[0]['pred'].shape == post_test_out[0]['label'].shape
pred, label = post_test_out[0]['pred'].cpu(), post_test_out[0]['label'].cpu()
# calculate all metrics here
# 1. Dice Score
test_soft_dice = -1.0 * self.ivado_dice_metric(pred, label)
# binarizing the predictions for calculating the rest of the metrics
pred = (post_test_out[0]['pred'].detach().cpu() > 0.5).float()
label = (post_test_out[0]['label'].detach().cpu() > 0.5).float()
# 1.1 Hard Dice Score
test_hard_dice = -1.0 * self.ivado_dice_metric(pred, label)
# 2. Precision Score
test_precision = precision_score(pred.numpy(), label.numpy())
# 3. Recall Score
test_recall = recall_score(pred.numpy(), label.numpy())
return {self.centers_list[dataloader_idx]: [test_soft_dice, test_hard_dice, test_precision, test_recall]}
def test_epoch_end(self, outputs):
avg_soft_dice_test, avg_hard_dice_test = {}, {}
avg_precision_test, avg_recall_test = {}, {}
for i in range(len(outputs)):
avg_soft_dice_test[self.centers_list[i]] = (torch.stack([ x[self.centers_list[i]][0] for x in outputs[i] ]).mean()).cpu().numpy()
avg_hard_dice_test[self.centers_list[i]] = (torch.stack([ x[self.centers_list[i]][1] for x in outputs[i] ]).mean()).cpu().numpy()
avg_precision_test[self.centers_list[i]] = (np.stack([ x[self.centers_list[i]][2] for x in outputs[i] ]).mean())
avg_recall_test[self.centers_list[i]] = (np.stack([ x[self.centers_list[i]][3] for x in outputs[i] ]).mean())
logger.info(f"Test (Soft) Dice for centers {self.centers_list}: {avg_soft_dice_test}")
logger.info(f"Test (Hard) Dice for centers {self.centers_list}: {avg_hard_dice_test}")
logger.info(f"Test Precision Score for centers {self.centers_list}: {avg_precision_test}")
logger.info(f"Test Recall Score for centers {self.centers_list}: {avg_recall_test}")
self.avg_test_dice = avg_soft_dice_test
self.avg_test_dice_hard = avg_hard_dice_test
self.avg_test_precision = avg_precision_test
self.avg_test_recall = avg_recall_test
def main(args):
# Setting the seed
pl.seed_everything(args.seed, workers=True)
dataset_root = "/home/GRAMES.POLYMTL.CA/u114716/domain_incr_learning/datalists/"
save_path = args.save_path
if args.optimizer in ["adamw", "AdamW", "Adamw"]:
optimizer_class = torch.optim.AdamW
elif args.optimizer in ["SGD", "sgd"]:
optimizer_class = torch.optim.SGD
# defining the centers list and order here such that every seed gives a new sequence of centers
centers_list = ['bwh', 'karo', 'milan', 'rennes', 'nih', 'montpellier', 'ucsf', 'amu']
np.random.shuffle(centers_list)
centers_order = "_".join(centers_list)
# final matrix of test dice scores
final_dice_scores = np.zeros((len(centers_list), len(centers_list)))
final_hard_dice_scores = np.zeros((len(centers_list), len(centers_list)))
final_precision_scores = np.zeros((len(centers_list), len(centers_list)))
final_recall_scores = np.zeros((len(centers_list), len(centers_list)))
# to save the best model on validation
save_path = os.path.join(save_path, centers_order, f"FT_seed={args.seed}")
if not os.path.exists(save_path):
os.makedirs(save_path, exist_ok=True)
pretrained_load_path = None
for i, center in enumerate(centers_list):
logger.info(f"Training on center {center} out of {centers_list} centers!")
timestamp = datetime.now().strftime(f"%Y%m%d-%H%M%S") # prints in YYYYMMDD-HHMMSS format
save_exp_id = f"{center}_se={args.seed}_{timestamp[4:]}"
if pretrained_load_path is not None:
pl_model = Model(args, centers_list=centers_list, center_name=center, data_root=dataset_root, optimizer_class=optimizer_class,
load_pretrained=True, load_path=pretrained_load_path, exp_id=save_exp_id)
else:
# i.e. train on the first center by loading weights from scratch
pl_model = Model(args, centers_list=centers_list, center_name=center, data_root=dataset_root, optimizer_class=optimizer_class,
load_pretrained=False, load_path=pretrained_load_path, exp_id=save_exp_id)
wandb_logger = pl.loggers.WandbLogger(
name=save_exp_id,
group=f"{args.model}_hard_v2",
log_model=True, # save best model using checkpoint callback
project='domain_il',
entity='naga-karthik',
config=args)
checkpoint_callback = pl.callbacks.ModelCheckpoint(
dirpath=save_path, filename=save_exp_id, monitor='val_loss',
save_top_k=1, mode="min", save_last=False, save_weights_only=True)
lr_monitor = pl.callbacks.LearningRateMonitor(logging_interval='epoch')
early_stopping = pl.callbacks.EarlyStopping(monitor="val_loss", min_delta=0.00, patience=args.patience,
verbose=False, mode="min")
# initialise Lightning's trainer.
trainer = pl.Trainer(
devices=args.num_gpus, accelerator="gpu", # strategy="ddp",
logger=wandb_logger,
callbacks=[checkpoint_callback, lr_monitor, early_stopping],
check_val_every_n_epoch=args.check_val_every_n_epochs,
max_epochs=args.max_epochs,
precision=32,
deterministic=True,
enable_progress_bar=args.enable_progress_bar)
# Train!
trainer.fit(pl_model)
logger.info("Training Done!")
logger.info(f"TRAINED ON CENTER: {center}; TESTING ON ALL CENTERS !!")
# Test!
trainer.test(pl_model)
final_dice_scores[i, :] = np.fromiter(pl_model.avg_test_dice.values(), dtype=float)
final_hard_dice_scores[i, :] = np.fromiter(pl_model.avg_test_dice_hard.values(), dtype=float)
final_precision_scores[i, :] = np.fromiter(pl_model.avg_test_precision.values(), dtype=float)
final_recall_scores[i, :] = np.fromiter(pl_model.avg_test_recall.values(), dtype=float)
print(final_hard_dice_scores)
logger.info("TESTING ON ALL CENTERS DONE !")
logger.info("Printing the Best Model Path!")
# print best checkpoint after training
print(trainer.checkpoint_callback.best_model_path)
# load the best checkpoint after training
# NOTE: this load_from_checkpoint method is making it execute the previous "print" statements that appear in-between
# in the terminal
loaded_model = pl_model.load_from_checkpoint(trainer.checkpoint_callback.best_model_path, strict=False)
pretrained_encoder = loaded_model.encoder
logger.info("SAVING THE BEST ENCODER !")
# saving the best encoder whose pre-trained weights will be loaded for the next center
torch.save(pretrained_encoder.state_dict(),
os.path.join(save_path, f"best_enc_{center}_FT_se={args.seed}.pt"))
pretrained_load_path = os.path.join(save_path, f"best_enc_{center}_FT_se={args.seed}.pt")
# closing the current wandb instance so that a new one is created for the next fold
wandb.finish()
# with open(os.path.join(args.results_dir, centers_order, f"seed={args.seed}", 'test_dice_matrix.txt'), 'a') as f:
with open(os.path.join(save_path, 'test_metrics.txt'), 'a') as f:
print('\n-------------- Test Metrics from Fine-tuning Across all Centers ----------------', file=f)
print(f"\nSeed Used: {args.seed}", file=f)
print(f"\ninitf={args.init_filters}_patch={args.patch_size}_lr={args.learning_rate}_bs={args.batch_size}_{timestamp[4:]}", file=f)
print(f"\n{np.array(centers_list)[None, :]}", file=f)
print(f"\n{np.array(centers_list)[:, None]}", file=f)
print('\n-------------- Test Hard Dice Scores ----------------', file=f)
print(f" { repr(final_hard_dice_scores)}", file=f)
print('\n-------------- Test Precision Scores ----------------', file=f)
print(f" { repr(final_precision_scores)}", file=f)
print('\n-------------- Test Recall Scores ----------------', file=f)
print(f" { repr(final_recall_scores)}", file=f)
print('\n-------------- Test Soft Dice Scores ----------------', file=f)
print(f" { repr(final_dice_scores)}", file=f)
print('-----------------------------------------------------------------', file=f)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Script for training custom models for SCI Lesion Segmentation.')
# Arguments for model, data, and training and saving
parser.add_argument('-e', '--only_eval', default=False, action='store_true', help='Only do evaluation, i.e. skip training!')
parser.add_argument('-m', '--model',
choices=['unet', 'UNet', 'unetr', 'UNETR', 'segresnet', 'SegResNet'],
default='unet', type=str, help='Model type to be used')
# dataset
parser.add_argument('-nspv', '--num_samples_per_volume', default=4, type=int, help="Number of samples to crop per volume")
# unet model
parser.add_argument('-initf', '--init_filters', default=16, type=int, help="Number of Filters in Init Layer")
parser.add_argument('-ps', '--patch_size', type=int, default=128, help='List containing subvolume size')
parser.add_argument('-dep', '--unet_depth', default=3, type=int, help="Depth of UNet model")
# optimizations
parser.add_argument('-lf', '--loss_func', choices=['ivado_dice', 'dice', 'dice_ce', 'dice_f'],
default='dice', type=str, help="Loss function to use")
parser.add_argument('-gpus', '--num_gpus', default=1, type=int, help="Number of GPUs to use")
parser.add_argument('-me', '--max_epochs', default=1000, type=int, help='Number of epochs for the training process')
parser.add_argument('-bs', '--batch_size', default=2, type=int, help='Batch size of the training and validation processes')
parser.add_argument('-opt', '--optimizer',
choices=['adamw', 'AdamW', 'SGD', 'sgd'],
default='adamw', type=str, help='Optimizer to use')
parser.add_argument('-lr', '--learning_rate', default=1e-4, type=float, help='Learning rate for training the model')
parser.add_argument('-pat', '--patience', default=200, type=int, help='number of validation steps (val_every_n_iters) to wait before early stopping')
parser.add_argument('--T_0', default=100, type=int, help='number of steps in each cosine cycle')
parser.add_argument('-epb', '--enable_progress_bar', default=False, action='store_true', help='by default is disabled since it doesnt work in colab')
parser.add_argument('-cve', '--check_val_every_n_epochs', default=1, type=int, help='num of epochs to wait before validation')
# saving
parser.add_argument('-sp', '--save_path',
default=f"/home/GRAMES.POLYMTL.CA/u114716/domain_incr_learning/saved_models",
type=str, help='Path to the saved models directory')
parser.add_argument('-c', '--continue_from_checkpoint', default=False, action='store_true', help='Load model from checkpoint and continue training')
parser.add_argument('-se', '--seed', default=42, type=int, help='Set seeds for reproducibility')
# testing
parser.add_argument('-rd', '--results_dir',
default=f"/home/GRAMES.POLYMTL.CA/u114716/domain_incr_learning/model_predictions",
type=str, help='Path to the model prediction results directory')
args = parser.parse_args()
main(args)