forked from clott3/PhC-2D-sq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
160 lines (129 loc) · 6.38 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import torch
from torch.utils import data
from torch.utils.tensorboard import SummaryWriter
import math
import numpy as np
import argparse
import torch.nn as nn
import torch.optim as optim
from PhC2d_data import PhCdata # Dataset class
from PhC2d_model import PhCNet # model class
def reset_seeds(seed):
'''This resets all the random seeds'''
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
torch.backends.cudnn.deterministic=True
torch.backends.cudnn.benchmark = False
def calfloss(output,target):
'Defines fractional loss of net output with data'
loss=torch.abs(output - target)
loss=torch.div(loss,target)
loss[loss==float("Inf")] = 0 #ignore divide by 0 errors. this occurs at gamma point
loss[torch.isnan(loss)]=0 #ignore nan errors
loss=torch.mean(loss)
return loss
def weights_init(m):
'custom weights initialization'
classname = m.__class__.__name__
if classname.find('Conv') != -1:
nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm') != -1:
nn.init.normal_(m.weight.data, 1.0, 0.02)
nn.init.constant_(m.bias.data, 0)
def train_and_eval_model(args, model, fv, ks, train_dataloader, valid_dataloader, test_dataloader, device):
## Define loss criteria, optimizer and adaptive learning scheduler
criterion = nn.MSELoss(reduction='mean')
optimizer = optim.RMSprop(model.parameters(), lr=args.learning_rate, alpha=0.9)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
patience=1,
threshold=0.01,
verbose=True)
writer = SummaryWriter("runs/"+f"BS={args.batchsize}_maxEp={args.maxepoch}_LR={args.learning_rate}_ks={ks}_model={fv}")
for epoch in range(1,args.maxepoch+1):
model.train()
running_loss = 0.0
for step, batch in enumerate(train_dataloader):
x_batch = batch[0].to(device)
y_batch = batch[1].to(device)
optimizer.zero_grad() # zero the parameter gradients
loss = criterion(model(x_batch), y_batch)
loss.backward() # backpropagate loss
optimizer.step() # update parameters
running_loss += loss.item()/args.nbands
print("Epoch = "+str(epoch)+" :Total loss = "+str(running_loss))
scheduler.step(running_loss) #this adjusts the adaptive LR scheduler
writer.add_scalar('Loss', running_loss, epoch) # log training stats
with torch.no_grad():
model.eval()
for step, batch in enumerate(valid_dataloader):
x_batch = batch[0].to(device)
y_batch = batch[1].to(device)
pred_batch = model(x_batch)
loss = criterion(pred_batch, y_batch)
tloss = loss.item()
floss = calfloss(pred_batch,y_batch)
ploss = floss.item()
writer.add_scalar('valid loss',tloss)
writer.add_scalar('valid fractional loss',ploss)
print('Total valid loss is '+str(ploss))
for step, batch in enumerate(test_dataloader):
x_batch = batch[0].to(device)
y_batch = batch[1].to(device)
pred_batch = model(x_batch)
loss = criterion(pred_batch, y_batch)
tloss = loss.item()
floss = calfloss(pred_batch,y_batch)
ploss = floss.item()
writer.add_scalar('test loss',tloss)
writer.add_scalar('test fractional loss',ploss)
print('Total test loss is '+str(ploss))
writer.close()
def main(args):
reset_seeds(args.seed)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # we use GPU 0 by default
print(device)
# load h5 file for data
if args.pol == 'TM':
h5file = args.path_to_h5+'/sqTM-res64.h5'
elif args.pol == 'TE':
h5file = args.path_to_h5+'/sqTM-res64.h5'
else:
raise ValueError("Polarization can only be TM or TE")
nsam = args.nsam # no. of samples
input_size = 32 # downsize to 32x32 (default dataset is 64x64)
nbands = args.nbands # no. of bands to predict
# Define train-val-test split
ntrain = int(0.7*nsam)
nvalid = int(0.15*nsam)
ntest = nsam - ntrain - nvalid
# Define dataset and dataloaders
train_dataset = PhCdata(h5file, ntrain, nvalid, ntest,
split = 'train', nbands = nbands, input_size = input_size)
valid_dataset = PhCdata(h5file, ntrain, nvalid, ntest,
split = 'valid', nbands = nbands, input_size = input_size)
test_dataset = PhCdata(h5file, ntrain, nvalid, ntest,
split = 'test', nbands = nbands, input_size = input_size)
train_dataloader = data.DataLoader(train_dataset, batch_size = args.batchsize, shuffle=True) # Define dataloader, shuffle every epoch
valid_dataloader = data.DataLoader(valid_dataset, batch_size=len(valid_dataset)) # one batch
test_dataloader = data.DataLoader(test_dataset, batch_size=len(test_dataset)) # one batch
# Define network architecture, i.e. channel depths (conv) and no. of nodes (fc). Defined here to ease modification of architecture
fv = [4,32,128,256,64,256,512,512,512]
ks = 11 # define kernel size of conv layers
net = PhCNet(fv,ks,nbands).to(device) # initialize network
net.apply(weights_init) #apply custom weight initialization
## TRAIN AND TEST MODEL##
train_and_eval_model(args,net,fv,ks,train_dataloader,valid_dataloader,test_dataloader,device)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--path_to_h5', type = str, help = 'path to directory with h5 data', default = '/media/charlotte/DATA/')
parser.add_argument('--pol', type = str, help = 'TM or TE', default = 'TM')
parser.add_argument('--nbands', type=int, help='num of bands to predict',default=6)
parser.add_argument('--nsam', type=int, help='num of training samples',default=20000)
# Hyperparameters
parser.add_argument('--learning_rate',type=float, help='pretraining/maml learning rate', default=1e-4)
parser.add_argument('--batchsize',type=int, help='batchsize',default=32)
parser.add_argument('--maxepoch',type=int, help='total no. of epochs to train', default=40)
parser.add_argument('--seed',type=int, help='random seed', default=1)
args = parser.parse_args()
main(args)