-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathsieve_template.cpp
69 lines (69 loc) · 1.9 KB
/
sieve_template.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
// Sieve of Eratosthenes
// (*this)[i] = (divisor of i, greater than 1)
// Example: [0, 1, 2, 3, 2, 5, 3, 7, 2, 3, 2, 11, ...]
// Complexity: Space O(MAXN), Time (construction) O(MAXNloglogMAXN)
struct SieveOfEratosthenes : std::vector<int> {
std::vector<int> primes;
SieveOfEratosthenes(int MAXN) : std::vector<int>(MAXN + 1) {
std::iota(begin(), end(), 0);
for (int i = 2; i <= MAXN; i++) {
if ((*this)[i] == i) {
primes.push_back(i);
for (int j = i; j <= MAXN; j += i)
(*this)[j] = i;
}
}
}
using T = long long int;
// Prime factorization for x <= MAXN^2
// Complexity: O(log x) (x <= MAXN)
// O(MAXN / logMAXN) (MAXN < x <= MAXN^2)
std::map<T, int> Factorize(T x) {
assert(x <= 1LL * (int(size()) - 1) * (int(size()) - 1));
std::map<T, int> ret;
if (x < int(size())) {
while (x > 1) {
ret[(*this)[x]]++;
x /= (*this)[x];
}
} else {
for (auto p : primes) {
while (!(x % p))
x /= p, ret[p]++;
if (x == 1)
break;
}
if (x > 1)
ret[x]++;
}
return ret;
}
std::vector<T> Divisors(int x) {
std::vector<T> ret{1};
for (auto p : Factorize(x)) {
int n = ret.size();
for (int i = 0; i < n; i++) {
for (T a = 1, d = 1; d <= p.second; d++) {
a *= p.first;
ret.push_back(ret[i] * a);
}
}
}
return ret; // Not sorted
}
// Moebius function Table
// return: [0=>0, 1=>1, 2=>-1, 3=>-1, 4=>0, 5=>-1, 6=>1, 7=>-1, 8=>0, ...]
std::vector<int> GenerateMoebiusFunctionTable() {
std::vector<int> ret(size());
for (int i = 1; i < int(size()); i++) {
if (i == 1)
ret[i] = 1;
else if ((i / (*this)[i]) % (*this)[i] == 0)
ret[i] = 0;
else
ret[i] = -ret[i / (*this)[i]];
}
return ret;
}
};
SieveOfEratosthenes sieve(1000000);