-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathntt.cpp
334 lines (271 loc) · 7.61 KB
/
ntt.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
// https://codedrills.io/contests/amrita-icpc-practice-session-3/problems/unique-strings
// NTT problem: Counting number of unique possible strings using given
// frequencies of characters
#include <bits/stdc++.h>
#define int int64_t
#define pb push_back
#define sz(x) (int)(x.size())
#define ALL(x) (x).begin(), (x).end()
#define F0R(i, R) for (int i = (0); i < (R); ++i)
#define FOR(i, L, R) for (int i = (L); i <= (R); ++i)
using namespace std;
struct $ {
$() {
ios::sync_with_stdio(0);
cin.tie(0);
}
} $;
template <class T> bool cmin(T &a, const T &b) { return b < a ? a = b, 1 : 0; }
template <class T> bool cmax(T &a, const T &b) { return a < b ? a = b, 1 : 0; }
const int MOD = 1e9 + 7;
int mod_pow(int a, int b, int mod = MOD) {
int ret = 1;
a %= mod;
while (b > 0) {
if (b % 2)
ret = ret * a % mod;
b /= 2;
a = a * a % mod;
}
return ret;
}
int mod_mul(int a, int b) { return a * b % MOD; }
int mod_sub(int a, int b) { return (a - b + MOD) % MOD; }
int mod_add(int a, int b) { return (a + b) % MOD; }
int mod_inv(int a) { return mod_pow(a, MOD - 2, MOD); }
// NTT template from neal
namespace NTT {
vector<int> roots = {0, 1};
vector<int> bit_reverse;
int max_size = -1;
int root;
bool is_power_of_two(int n) { return (n & (n - 1)) == 0; }
int round_up_power_two(int n) {
assert(n > 0);
while (n & (n - 1))
n = (n | (n - 1)) + 1;
return n;
}
// Given n (a power of two), finds k such that n == 1 << k.
int get_length(int n) {
assert(is_power_of_two(n));
return __builtin_ctz(n);
}
// Rearranges the indices to be sorted by lowest bit first, then second lowest,
// etc., rather than highest bit first. This makes even-odd div-conquer much
// easier.
void bit_reorder(int n, vector<int> &values) {
if ((int)bit_reverse.size() != n) {
bit_reverse.assign(n, 0);
int length = get_length(n);
for (int i = 0; i < n; i++)
bit_reverse[i] = (bit_reverse[i >> 1] >> 1) + ((i & 1) << (length - 1));
}
for (int i = 0; i < n; i++)
if (i < bit_reverse[i])
swap(values[i], values[bit_reverse[i]]);
}
void find_root() {
int order = MOD - 1;
max_size = 1;
while (order % 2 == 0) {
order /= 2;
max_size *= 2;
}
root = 2;
// Find a max_size-th primitive root of MOD.
while (!(mod_pow(root, max_size) == 1 && mod_pow(root, max_size / 2) != 1))
root++;
}
void prepare_roots(int n) {
if (max_size < 0)
find_root();
if ((int)roots.size() >= n)
return;
int length = get_length(roots.size());
roots.resize(n);
// The roots array is set up such that for a given power of two n >= 2,
// roots[n / 2] through roots[n - 1] are the first half of the n-th primitive
// roots of MOD.
while (1 << length < n) {
// z is a 2^(length + 1)-th primitive root of MOD.
int z = mod_pow(root, max_size >> (length + 1));
for (int i = 1 << (length - 1); i < 1 << length; i++) {
roots[2 * i] = roots[i];
roots[2 * i + 1] = mod_mul(roots[i], z);
}
length++;
}
}
void fft_iterative(int N, vector<int> &values) {
assert(is_power_of_two(N));
prepare_roots(N);
bit_reorder(N, values);
assert(N <= max_size);
for (int n = 1; n < N; n *= 2)
for (int start = 0; start < N; start += 2 * n)
for (int i = 0; i < n; i++) {
int even = values[start + i];
int odd = mod_mul(values[start + n + i], roots[n + i]);
values[start + n + i] = mod_sub(even, odd);
values[start + i] = mod_add(even, odd);
}
}
const int FFT_CUTOFF = 450;
vector<int> mod_multiply(vector<int> left, vector<int> right,
bool trim = true) {
int n = left.size();
int m = right.size();
for (int i = 0; i < n; i++)
assert(0 <= left[i] && left[i] < MOD);
for (int i = 0; i < m; i++)
assert(0 <= right[i] && right[i] < MOD);
// Brute force when either n or m is small enough.
if (min(n, m) < FFT_CUTOFF) {
const uint64_t ULL_BOUND =
numeric_limits<uint64_t>::max() - (uint64_t)MOD * MOD;
vector<uint64_t> result(n + m - 1);
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) {
result[i + j] += (uint64_t)left[i] * right[j];
if (result[i + j] > ULL_BOUND)
result[i + j] %= MOD;
}
for (int i = 0; i < (int)result.size(); i++)
if (result[i] >= (uint64_t)MOD)
result[i] %= MOD;
if (trim) {
while (!result.empty() && result.back() == 0)
result.pop_back();
}
return vector<int>(result.begin(), result.end());
}
int N = round_up_power_two(n + m - 1);
left.resize(N);
right.resize(N);
bool equal = left == right;
fft_iterative(N, left);
if (equal)
right = left;
else
fft_iterative(N, right);
int inv_N = mod_inv(N);
for (int i = 0; i < N; i++)
left[i] = mod_mul(mod_mul(left[i], right[i]), inv_N);
reverse(left.begin() + 1, left.end());
fft_iterative(N, left);
left.resize(n + m - 1);
if (trim) {
while (!left.empty() && left.back() == 0)
left.pop_back();
}
return left;
}
vector<int> power(const vector<int> &v, int exponent) {
assert(exponent >= 0);
vector<int> result = {1};
if (exponent == 0)
return result;
for (int k = 31 - __builtin_clz(exponent); k >= 0; k--) {
result = mod_multiply(result, result);
if (exponent & 1 << k)
result = mod_multiply(result, v);
}
return result;
}
}; // namespace NTT
struct mi {
using ll = long long;
ll v;
explicit operator ll() const { return v; }
mi() { v = 0; }
mi(ll _v) {
v = (-MOD < _v && _v < MOD) ? _v : _v % MOD;
if (v < 0)
v += MOD;
}
friend bool operator==(const mi &a, const mi &b) { return a.v == b.v; }
friend bool operator!=(const mi &a, const mi &b) { return !(a == b); }
friend bool operator<(const mi &a, const mi &b) { return a.v < b.v; }
mi &operator+=(const mi &m) {
if ((v += m.v) >= MOD)
v -= MOD;
return *this;
}
mi &operator-=(const mi &m) {
if ((v -= m.v) < 0)
v += MOD;
return *this;
}
mi &operator*=(const mi &m) {
v = v * m.v % MOD;
return *this;
}
mi &operator/=(const mi &m) { return (*this) *= inv(m); }
friend mi pow(mi a, ll p) {
mi ans = 1;
assert(p >= 0);
for (; p; p /= 2, a *= a)
if (p & 1)
ans *= a;
return ans;
}
friend mi inv(const mi &a) {
assert(a.v != 0);
return pow(a, MOD - 2);
}
mi operator-() const { return mi(-v); }
mi &operator++() { return *this += 1; }
mi &operator--() { return *this -= 1; }
mi operator++(int32_t) {
mi temp;
temp.v = v++;
return temp;
}
mi operator--(int32_t) {
mi temp;
temp.v = v--;
return temp;
}
friend mi operator+(mi a, const mi &b) { return a += b; }
friend mi operator-(mi a, const mi &b) { return a -= b; }
friend mi operator*(mi a, const mi &b) { return a *= b; }
friend mi operator/(mi a, const mi &b) { return a /= b; }
friend ostream &operator<<(ostream &os, const mi &m) {
os << m.v;
return os;
}
friend istream &operator>>(istream &is, mi &m) {
ll x;
is >> x;
m.v = x;
return is;
}
};
const int N = 5005;
mi ifact[N + 1], fact[N + 1];
int32_t main() {
fact[0] = 1;
FOR(i, 1, N) fact[i] = i * fact[i - 1];
FOR(i, 0, N) ifact[i] = mi(1) / fact[i];
string s;
cin >> s;
vector<int> f(26);
for (char ch : s)
f[ch - 'a']++;
vector<int> result = {1}; // 1.x^0 <-- initial result polynomial
F0R(ch, 26) {
if (!f[ch])
continue;
vector<int> poly(f[ch] + 1);
FOR(cnt, 0, f[ch]) { poly[cnt] = ifact[cnt].v; }
result = NTT::mod_multiply(result, poly);
}
mi ans = 0;
FOR(len, 1, sz(s)) {
if (len < sz(result)) {
ans += fact[len] * result[len];
}
}
cout << ans << '\n';
}