-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathfibonacci_matrix_exponentiation.cc
94 lines (86 loc) · 1.24 KB
/
fibonacci_matrix_exponentiation.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
const int MOD = 1e9 + 7;
int add(int a, int b)
{
int res = a + b;
if(res >= MOD)
return res - MOD;
return res;
}
int mult(int a, int b)
{
long long res = a;
res *= b;
if(res >= MOD)
return res % MOD;
return res;
}
const int SZ = 2;
struct matrix
{
int arr[SZ][SZ];
void reset()
{
memset(arr, 0, sizeof(arr));
}
void makeiden()
{
reset();
for(int i=0;i<SZ;i++)
{
arr[i][i] = 1;
}
}
matrix operator + (const matrix &o) const
{
matrix res;
for(int i=0;i<SZ;i++)
{
for(int j=0;j<SZ;j++)
{
res.arr[i][j] = add(arr[i][j], o.arr[i][j]);
}
}
return res;
}
matrix operator * (const matrix &o) const
{
matrix res;
for(int i=0;i<SZ;i++)
{
for(int j=0;j<SZ;j++)
{
res.arr[i][j] = 0;
for(int k=0;k<SZ;k++)
{
res.arr[i][j] = add(res.arr[i][j] , mult(arr[i][k] , o.arr[k][j]));
}
}
}
return res;
}
};
matrix power(matrix a, int b)
{
matrix res;
res.makeiden();
while(b)
{
if(b & 1)
{
res = res * a;
}
a = a * a;
b >>= 1;
}
return res;
}
// fib(1) = fib(2) = 1
int fib(int n) {
if (n == 1) return 1;
if (n == 2) return 1;
matrix X;
X.arr[0][0] = X.arr[0][1] = X.arr[1][0] = 1;
X.arr[1][1] = 0;
X = power(X, n-2);
return add(X.arr[0][0], X.arr[1][0]);
}