We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
如题,在使用训练完成的adapter_model.bin和adapter_config.json的时候一切正常,但当我把训练过程中checkpoint的adapter_model.bin放到output文件夹,并使用之前已经存在的adapter_config.json时,实际问答过程中模型的表现和没有LoRA的时候完全一样;最关键的是当我撤销上述操作让模型和adapter_config.json用回原来训练完成的版本时,问答过程的表现依然和没有LoRA的时候完全一样。 现在直接用ipynb写代码预测,有一些条目有LoRA的效果,另一些则完全没有效果。这是正常现象吗?
The text was updated successfully, but these errors were encountered:
+1 文件md5都不一样了。感觉保存时候哪里出问题了。
Sorry, something went wrong.
我也遇到了这样的问题,修改一下代码就好了。 `class ModifiedTrainer(Trainer): def compute_loss(self, model, inputs, return_outputs=False): return model( input_ids=inputs["input_ids"], labels=inputs["labels"], ).loss
def save_model(self, output_dir=None, _internal_call=False): # from transformers.trainer import TRAINING_ARGS_NAME os.makedirs(output_dir, exist_ok=True) # torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME)) # saved_params = { # k: v.to("cpu") for k, v in self.model.named_parameters() if v.requires_grad # } # torch.save(saved_params, os.path.join(output_dir, "adapter_model.bin")) self.model.save_pretrained(output_dir)`
No branches or pull requests
如题,在使用训练完成的adapter_model.bin和adapter_config.json的时候一切正常,但当我把训练过程中checkpoint的adapter_model.bin放到output文件夹,并使用之前已经存在的adapter_config.json时,实际问答过程中模型的表现和没有LoRA的时候完全一样;最关键的是当我撤销上述操作让模型和adapter_config.json用回原来训练完成的版本时,问答过程的表现依然和没有LoRA的时候完全一样。
现在直接用ipynb写代码预测,有一些条目有LoRA的效果,另一些则完全没有效果。这是正常现象吗?
The text was updated successfully, but these errors were encountered: