-
Notifications
You must be signed in to change notification settings - Fork 118
/
dqn.prototxt
143 lines (143 loc) · 2.11 KB
/
dqn.prototxt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
layers {
name: "frames_input_layer"
type: MEMORY_DATA
top: "frames"
top: "dummy1"
memory_data_param {
batch_size: 32
channels: 4
height: 84
width: 84
}
}
layers {
name: "target_input_layer"
type: MEMORY_DATA
top: "target"
top: "dummy2"
memory_data_param {
batch_size: 32
channels: 18
height: 1
width: 1
}
}
layers {
name: "filter_input_layer"
type: MEMORY_DATA
top: "filter"
top: "dummy3"
memory_data_param {
batch_size: 32
channels: 18
height: 1
width: 1
}
}
layers {
name: "silence_layer"
type: SILENCE
bottom: "dummy1"
bottom: "dummy2"
bottom: "dummy3"
}
layers {
name: "conv1_layer"
type: CONVOLUTION
bottom: "frames"
top: "conv1"
convolution_param {
num_output: 16
kernel_size: 8
stride: 4
weight_filler {
type: "gaussian"
std: 0.01
}
}
}
layers {
name: "conv1_relu_layer"
type: RELU
bottom: "conv1"
top: "conv1"
relu_param {
negative_slope: 0.01
}
}
layers {
name: "conv2_layer"
type: CONVOLUTION
bottom: "conv1"
top: "conv2"
convolution_param {
num_output: 32
kernel_size: 4
stride: 2
weight_filler {
type: "gaussian"
std: 0.01
}
}
}
layers {
name: "conv2_relu_layer"
type: RELU
bottom: "conv2"
top: "conv2"
relu_param {
negative_slope: 0.01
}
}
layers {
name: "ip1_layer"
type: INNER_PRODUCT
bottom: "conv2"
top: "ip1"
inner_product_param {
num_output: 256
weight_filler {
type: "gaussian"
std: 0.01
}
}
}
layers {
name: "ip1_relu_layer"
type: RELU
bottom: "ip1"
top: "ip1"
relu_param {
negative_slope: 0.01
}
}
layers {
name: "ip2_layer"
type: INNER_PRODUCT
bottom: "ip1"
top: "q_values"
inner_product_param {
num_output: 18
weight_filler {
type: "gaussian"
std: 0.01
}
}
}
layers {
name: "eltwise_layer"
type: ELTWISE
bottom: "q_values"
bottom: "filter"
top: "filtered_q_values"
eltwise_param {
operation: PROD
}
}
layers {
name: "loss"
type: EUCLIDEAN_LOSS
bottom: "filtered_q_values"
bottom: "target"
top: "loss"
}