-
Notifications
You must be signed in to change notification settings - Fork 118
/
dqn.cpp
381 lines (355 loc) · 13.8 KB
/
dqn.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
#include "dqn.hpp"
#include <algorithm>
#include <iostream>
#include <cassert>
#include <sstream>
#include <boost/format.hpp>
#include <boost/algorithm/string.hpp>
#include <glog/logging.h>
#include "prettyprint.hpp"
namespace dqn {
/**
* Convert pixel_t (NTSC) to RGB values.
* Each value range [0,255]
*/
const std::array<int, 3> PixelToRGB(const pixel_t& pixel) {
constexpr int ntsc_to_rgb[] = {
0x000000, 0, 0x4a4a4a, 0, 0x6f6f6f, 0, 0x8e8e8e, 0,
0xaaaaaa, 0, 0xc0c0c0, 0, 0xd6d6d6, 0, 0xececec, 0,
0x484800, 0, 0x69690f, 0, 0x86861d, 0, 0xa2a22a, 0,
0xbbbb35, 0, 0xd2d240, 0, 0xe8e84a, 0, 0xfcfc54, 0,
0x7c2c00, 0, 0x904811, 0, 0xa26221, 0, 0xb47a30, 0,
0xc3903d, 0, 0xd2a44a, 0, 0xdfb755, 0, 0xecc860, 0,
0x901c00, 0, 0xa33915, 0, 0xb55328, 0, 0xc66c3a, 0,
0xd5824a, 0, 0xe39759, 0, 0xf0aa67, 0, 0xfcbc74, 0,
0x940000, 0, 0xa71a1a, 0, 0xb83232, 0, 0xc84848, 0,
0xd65c5c, 0, 0xe46f6f, 0, 0xf08080, 0, 0xfc9090, 0,
0x840064, 0, 0x97197a, 0, 0xa8308f, 0, 0xb846a2, 0,
0xc659b3, 0, 0xd46cc3, 0, 0xe07cd2, 0, 0xec8ce0, 0,
0x500084, 0, 0x68199a, 0, 0x7d30ad, 0, 0x9246c0, 0,
0xa459d0, 0, 0xb56ce0, 0, 0xc57cee, 0, 0xd48cfc, 0,
0x140090, 0, 0x331aa3, 0, 0x4e32b5, 0, 0x6848c6, 0,
0x7f5cd5, 0, 0x956fe3, 0, 0xa980f0, 0, 0xbc90fc, 0,
0x000094, 0, 0x181aa7, 0, 0x2d32b8, 0, 0x4248c8, 0,
0x545cd6, 0, 0x656fe4, 0, 0x7580f0, 0, 0x8490fc, 0,
0x001c88, 0, 0x183b9d, 0, 0x2d57b0, 0, 0x4272c2, 0,
0x548ad2, 0, 0x65a0e1, 0, 0x75b5ef, 0, 0x84c8fc, 0,
0x003064, 0, 0x185080, 0, 0x2d6d98, 0, 0x4288b0, 0,
0x54a0c5, 0, 0x65b7d9, 0, 0x75cceb, 0, 0x84e0fc, 0,
0x004030, 0, 0x18624e, 0, 0x2d8169, 0, 0x429e82, 0,
0x54b899, 0, 0x65d1ae, 0, 0x75e7c2, 0, 0x84fcd4, 0,
0x004400, 0, 0x1a661a, 0, 0x328432, 0, 0x48a048, 0,
0x5cba5c, 0, 0x6fd26f, 0, 0x80e880, 0, 0x90fc90, 0,
0x143c00, 0, 0x355f18, 0, 0x527e2d, 0, 0x6e9c42, 0,
0x87b754, 0, 0x9ed065, 0, 0xb4e775, 0, 0xc8fc84, 0,
0x303800, 0, 0x505916, 0, 0x6d762b, 0, 0x88923e, 0,
0xa0ab4f, 0, 0xb7c25f, 0, 0xccd86e, 0, 0xe0ec7c, 0,
0x482c00, 0, 0x694d14, 0, 0x866a26, 0, 0xa28638, 0,
0xbb9f47, 0, 0xd2b656, 0, 0xe8cc63, 0, 0xfce070, 0
};
const auto rgb = ntsc_to_rgb[pixel];
const auto r = rgb >> 16;
const auto g = (rgb >> 8) & 0xFF;
const auto b = rgb & 0xFF;
return {r, g, b};
}
/**
* Convert RGB values to a grayscale value [0,255].
*/
uint8_t RGBToGrayscale(const std::array<int, 3>& rgb) {
assert(rgb[0] >= 0 && rgb[0] <= 255);
assert(rgb[1] >= 0 && rgb[1] <= 255);
assert(rgb[2] >= 0 && rgb[2] <= 255);
// Normalized luminosity grayscale
return rgb[0] * 0.21 + rgb[1] * 0.72 + rgb[2] * 0.07;
}
uint8_t PixelToGrayscale(const pixel_t pixel) {
return RGBToGrayscale(PixelToRGB(pixel));
}
FrameDataSp PreprocessScreen(const ALEScreen& raw_screen) {
assert(raw_screen.width() == kRawFrameWidth);
assert(raw_screen.height() == kRawFrameHeight);
const auto raw_pixels = raw_screen.getArray();
auto screen = std::make_shared<FrameData>();
assert(kRawFrameHeight > kRawFrameWidth);
const auto x_ratio = kRawFrameWidth / static_cast<double>(kCroppedFrameSize);
const auto y_ratio = kRawFrameHeight / static_cast<double>(kCroppedFrameSize);
for (auto i = 0; i < kCroppedFrameSize; ++i) {
for (auto j = 0; j < kCroppedFrameSize; ++j) {
const auto first_x = static_cast<int>(std::floor(j * x_ratio));
const auto last_x = static_cast<int>(std::floor((j + 1) * x_ratio));
const auto first_y = static_cast<int>(std::floor(i * y_ratio));
const auto last_y = static_cast<int>(std::floor((i + 1) * y_ratio));
auto x_sum = 0.0;
auto y_sum = 0.0;
uint8_t resulting_color = 0.0;
for (auto x = first_x; x <= last_x; ++x) {
double x_ratio_in_resulting_pixel = 1.0;
if (x == first_x) {
x_ratio_in_resulting_pixel = x + 1 - j * x_ratio;
} else if (x == last_x) {
x_ratio_in_resulting_pixel = x_ratio * (j + 1) - x;
}
assert(
x_ratio_in_resulting_pixel >= 0.0 &&
x_ratio_in_resulting_pixel <= 1.0);
for (auto y = first_y; y <= last_y; ++y) {
double y_ratio_in_resulting_pixel = 1.0;
if (y == first_y) {
y_ratio_in_resulting_pixel = y + 1 - i * y_ratio;
} else if (y == last_y) {
y_ratio_in_resulting_pixel = y_ratio * (i + 1) - y;
}
assert(
y_ratio_in_resulting_pixel >= 0.0 &&
y_ratio_in_resulting_pixel <= 1.0);
const auto grayscale =
PixelToGrayscale(
raw_pixels[static_cast<int>(y * kRawFrameWidth + x)]);
resulting_color +=
(x_ratio_in_resulting_pixel / x_ratio) *
(y_ratio_in_resulting_pixel / y_ratio) * grayscale;
}
}
(*screen)[i * kCroppedFrameSize + j] = resulting_color;
}
}
return screen;
}
std::string DrawFrame(const FrameData& frame) {
std::ostringstream o;
for (auto row = 0; row < kCroppedFrameSize; ++row) {
for (auto col = 0; col < kCroppedFrameSize; ++col) {
o << std::hex <<
static_cast<int>(frame[row * kCroppedFrameSize + col] / 16);
}
o << std::endl;
}
return o.str();
}
std::string PrintQValues(
const std::vector<float>& q_values, const ActionVect& actions) {
assert(!q_values.empty());
assert(!actions.empty());
assert(q_values.size() == actions.size());
std::ostringstream actions_buf;
std::ostringstream q_values_buf;
for (auto i = 0; i < q_values.size(); ++i) {
const auto a_str =
boost::algorithm::replace_all_copy(
action_to_string(actions[i]), "PLAYER_A_", "");
const auto q_str = std::to_string(q_values[i]);
const auto column_size = std::max(a_str.size(), q_str.size()) + 1;
actions_buf.width(column_size);
actions_buf << a_str;
q_values_buf.width(column_size);
q_values_buf << q_str;
}
actions_buf << std::endl;
q_values_buf << std::endl;
return actions_buf.str() + q_values_buf.str();
}
template <typename Dtype>
bool HasBlobSize(
const caffe::Blob<Dtype>& blob,
const int num,
const int channels,
const int height,
const int width) {
return blob.num() == num &&
blob.channels() == channels &&
blob.height() == height &&
blob.width() == width;
}
void DQN::LoadTrainedModel(const std::string& model_bin) {
net_->CopyTrainedLayersFrom(model_bin);
}
void DQN::Initialize() {
// Initialize net and solver
caffe::SolverParameter solver_param;
caffe::ReadProtoFromTextFileOrDie(solver_param_, &solver_param);
solver_.reset(caffe::GetSolver<float>(solver_param));
net_ = solver_->net();
// Cache pointers to blobs that hold Q values
q_values_blob_ = net_->blob_by_name("q_values");
// Initialize dummy input data with 0
std::fill(dummy_input_data_.begin(), dummy_input_data_.end(), 0.0);
// Cache pointers to input layers
frames_input_layer_ =
boost::dynamic_pointer_cast<caffe::MemoryDataLayer<float>>(
net_->layer_by_name("frames_input_layer"));
assert(frames_input_layer_);
assert(HasBlobSize(
*net_->blob_by_name("frames"),
kMinibatchSize,
kInputFrameCount,
kCroppedFrameSize,
kCroppedFrameSize));
target_input_layer_ =
boost::dynamic_pointer_cast<caffe::MemoryDataLayer<float>>(
net_->layer_by_name("target_input_layer"));
assert(target_input_layer_);
assert(HasBlobSize(
*net_->blob_by_name("target"), kMinibatchSize, kOutputCount, 1, 1));
filter_input_layer_ =
boost::dynamic_pointer_cast<caffe::MemoryDataLayer<float>>(
net_->layer_by_name("filter_input_layer"));
assert(filter_input_layer_);
assert(HasBlobSize(
*net_->blob_by_name("filter"), kMinibatchSize, kOutputCount, 1, 1));
}
Action DQN::SelectAction(const InputFrames& last_frames, const double epsilon) {
assert(epsilon >= 0.0 && epsilon <= 1.0);
auto action = SelectActionGreedily(last_frames).first;
if (std::uniform_real_distribution<>(0.0, 1.0)(random_engine) < epsilon) {
// Select randomly
const auto random_idx =
std::uniform_int_distribution<int>(0, legal_actions_.size() - 1)(random_engine);
action = legal_actions_[random_idx];
std::cout << action_to_string(action) << " (random)";
} else {
std::cout << action_to_string(action) << " (greedy)";
}
std::cout << " epsilon:" << epsilon << std::endl;
return action;
}
std::pair<Action, float> DQN::SelectActionGreedily(const InputFrames& last_frames) {
return SelectActionGreedily(std::vector<InputFrames>{{last_frames}}).front();
}
std::vector<std::pair<Action, float>> DQN::SelectActionGreedily(
const std::vector<InputFrames>& last_frames_batch) {
assert(last_frames_batch.size() <= kMinibatchSize);
std::array<float, kMinibatchDataSize> frames_input;
for (auto i = 0; i < last_frames_batch.size(); ++i) {
// Input frames to the net and compute Q values for each legal actions
for (auto j = 0; j < kInputFrameCount; ++j) {
const auto& frame_data = last_frames_batch[i][j];
std::copy(
frame_data->begin(),
frame_data->end(),
frames_input.begin() + i * kInputDataSize +
j * kCroppedFrameDataSize);
}
}
InputDataIntoLayers(frames_input, dummy_input_data_, dummy_input_data_);
net_->ForwardPrefilled(nullptr);
std::vector<std::pair<Action, float>> results;
results.reserve(last_frames_batch.size());
for (auto i = 0; i < last_frames_batch.size(); ++i) {
// Get the Q values from the net
const auto action_evaluator = [&](Action action) {
const auto q = q_values_blob_->data_at(i, static_cast<int>(action), 0, 0);
assert(!std::isnan(q));
return q;
};
std::vector<float> q_values(legal_actions_.size());
std::transform(
legal_actions_.begin(),
legal_actions_.end(),
q_values.begin(),
action_evaluator);
if (last_frames_batch.size() == 1) {
std::cout << PrintQValues(q_values, legal_actions_);
}
// Select the action with the maximum Q value
const auto max_idx =
std::distance(
q_values.begin(),
std::max_element(q_values.begin(), q_values.end()));
results.emplace_back(legal_actions_[max_idx], q_values[max_idx]);
}
return results;
}
void DQN::AddTransition(const Transition& transition) {
if (replay_memory_.size() == replay_memory_capacity_) {
replay_memory_.pop_front();
}
replay_memory_.push_back(transition);
}
void DQN::Update() {
std::cout << "iteration: " << current_iter_++ << std::endl;
// Sample transitions from replay memory
std::vector<int> transitions;
transitions.reserve(kMinibatchSize);
for (auto i = 0; i < kMinibatchSize; ++i) {
const auto random_transition_idx =
std::uniform_int_distribution<int>(0, replay_memory_.size() - 1)(
random_engine);
transitions.push_back(random_transition_idx);
}
// Compute target values: max_a Q(s',a)
std::vector<InputFrames> target_last_frames_batch;
for (const auto idx : transitions) {
const auto& transition = replay_memory_[idx];
if (!std::get<3>(transition)) {
// This is a terminal state
continue;
}
// Compute target value
InputFrames target_last_frames;
for (auto i = 0; i < kInputFrameCount - 1; ++i) {
target_last_frames[i] = std::get<0>(transition)[i + 1];
}
target_last_frames[kInputFrameCount - 1] = std::get<3>(transition).get();
target_last_frames_batch.push_back(target_last_frames);
}
const auto actions_and_values =
SelectActionGreedily(target_last_frames_batch);
FramesLayerInputData frames_input;
TargetLayerInputData target_input;
FilterLayerInputData filter_input;
std::fill(target_input.begin(), target_input.end(), 0.0f);
std::fill(filter_input.begin(), filter_input.end(), 0.0f);
auto target_value_idx = 0;
for (auto i = 0; i < kMinibatchSize; ++i) {
const auto& transition = replay_memory_[transitions[i]];
const auto action = std::get<1>(transition);
assert(static_cast<int>(action) < kOutputCount);
const auto reward = std::get<2>(transition);
assert(reward >= -1.0 && reward <= 1.0);
const auto target = std::get<3>(transition) ?
reward + gamma_ * actions_and_values[target_value_idx++].second :
reward;
assert(!std::isnan(target));
target_input[i * kOutputCount + static_cast<int>(action)] = target;
filter_input[i * kOutputCount + static_cast<int>(action)] = 1;
VLOG(1) << "filter:" << action_to_string(action) << " target:" << target;
for (auto j = 0; j < kInputFrameCount; ++j) {
const auto& frame_data = std::get<0>(transition)[j];
std::copy(
frame_data->begin(),
frame_data->end(),
frames_input.begin() + i * kInputDataSize +
j * kCroppedFrameDataSize);
}
}
InputDataIntoLayers(frames_input, target_input, filter_input);
solver_->Step(1);
// Log the first parameter of each hidden layer
VLOG(1) << "conv1:" <<
net_->layer_by_name("conv1_layer")->blobs().front()->data_at(1, 0, 0, 0);
VLOG(1) << "conv2:" <<
net_->layer_by_name("conv2_layer")->blobs().front()->data_at(1, 0, 0, 0);
VLOG(1) << "ip1:" <<
net_->layer_by_name("ip1_layer")->blobs().front()->data_at(1, 0, 0, 0);
VLOG(1) << "ip2:" <<
net_->layer_by_name("ip2_layer")->blobs().front()->data_at(1, 0, 0, 0);
}
void DQN::InputDataIntoLayers(
const FramesLayerInputData& frames_input,
const TargetLayerInputData& target_input,
const FilterLayerInputData& filter_input) {
frames_input_layer_->Reset(
const_cast<float*>(frames_input.data()),
dummy_input_data_.data(),
kMinibatchSize);
target_input_layer_->Reset(
const_cast<float*>(target_input.data()),
dummy_input_data_.data(),
kMinibatchSize);
filter_input_layer_->Reset(
const_cast<float*>(filter_input.data()),
dummy_input_data_.data(),
kMinibatchSize);
}
}