-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathcommon.py
991 lines (806 loc) · 32.5 KB
/
common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
# -*- coding: utf-8 -*-
#
# Copyright 2015 Matthieu Baerts & Quentin De Coninck
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
# MA 02110-1301, USA.
from __future__ import print_function
##################################################
# IMPORTS #
##################################################
import os
import matplotlib
# Do not use any X11 backend
matplotlib.use('Agg')
matplotlib.rcParams['pdf.fonttype'] = 42
matplotlib.rcParams['ps.fonttype'] = 42
import matplotlib.pyplot as plt
import numpy as np
import pickle
from scipy.stats import gaussian_kde
import shutil
import subprocess
import sys
import tempfile
import threading
import traceback
from multiprocessing import Process
##################################################
# COMMON CLASSES #
##################################################
class cd:
""" Context manager to change the current working directory """
def __init__(self, newPath):
self.newPath = newPath
def __enter__(self):
self.savedPath = os.getcwd()
os.chdir(self.newPath)
def __exit__(self, etype, value, traceback):
os.chdir(self.savedPath)
##################################################
# COMMON EXCEPTIONS #
##################################################
class TSharkError(Exception):
pass
##################################################
# COMMON CONSTANTS #
##################################################
# Lines in xpl files that starts with one of the words in XPL_ONE_POINT have one point
XPL_ONE_POINT = ['darrow', 'uarrow', 'diamond', 'dot', 'atext', 'dtick', 'utick', 'atext', 'box', 'htick']
# Lines in xpl files that starts with one of the words in XPL_TWO_POINTS have two points
XPL_TWO_POINTS = ['line']
# The default stat directory
DEF_STAT_DIR = 'stats'
# The default aggl directory
DEF_AGGL_DIR = 'aggls'
# The default sums directory
DEF_SUMS_DIR = 'sums'
# The default rtt directory
DEF_RTT_DIR = 'rtt'
# Another rtt directory, for mptcp subflows
DEF_RTT_SUBFLOW_DIR = 'rtt_subflow'
# Directory with information about failed establishment of subflows (TCPConnections)
DEF_FAILED_CONNS_DIR = 'failed_conns'
# Directory of acksize info
DEF_ACKSIZE_DIR = 'acksize'
# The default interface to analyse
DEF_IFACE = 'any'
# The time sequence and throughput graphs directory
TSG_THGPT_DIR = 'tsg_thgpt'
# The congestion window graphs directory
CWIN_DIR = 'cwin'
# The agglomerated graphs directory
AGGL_DIR = 'aggl'
# The directory of csv files
CSV_DIR = 'csv'
# Following constants are used to make the code cleaner and more robust (for dictionary)
# Those are mainly determined by the output of mptcptrace
CELL = 'cellular'
WIFI = 'wifi'
# IPv4 or IPv6
TYPE = 'type'
# Interface: CELL or WIFI
IF = 'interface'
# Indicate if the connection has full info or only a subset
TCP_COMPLETE = 'tcp_complete'
# Source IP address
SADDR = 'saddr'
# Destination IP address
DADDR = 'daddr'
# Source port
SPORT = 'sport'
# Destination port
DPORT = 'dport'
# Window scale for source
WSCALESRC = 'wscalesrc'
# Window scale for destination
WSCALEDST = 'wscaledst'
# Start of a connection (first packet)
START = 'start_time'
# Duration of a connection
DURATION = 'duration'
# Number of packets
PACKS = 'packets'
# Number of bytes
BYTES = 'bytes'
# Number of data bytes (according to tcptrace)
BYTES_DATA = 'bytes_data'
# Number of bytes missed by tcptrace (if non-zero, this connection should be take with care)
MISSED_DATA = 'missed_data'
# Number of packets retransmitted
PACKS_RETRANS = 'packets_retrans'
# Number of bytes retransmitted
BYTES_RETRANS = 'bytes_retrans'
# Timestamp of retransmissions
TIMESTAMP_RETRANS = 'timestamp_retrans'
# tcpcsm information about retransmissions
TCPCSM_RETRANS = 'tcpcsm_retrans'
# Number of packets out of orders
PACKS_OOO = 'packets_outoforder'
# Congestion window graph data dictionary
CWIN_DATA = 'congestion_window_data'
# Timestamp of reinjected packets
REINJ_ORIG_TIMESTAMP = 'reinjected_orig_timestamp'
# Reinjected packets
REINJ_ORIG_PACKS = 'reinjected_orig_packets'
# Reinjected bytes
REINJ_ORIG_BYTES = 'reinjected_orig_bytes'
# Reinjected origin
REINJ_ORIG = 'reinjected_orig'
# Is reinjection (timestamp in char + bytes reinjected)
IS_REINJ = 'is_reinjection'
# Number of bytes returned by mptcptrace (unique bytes)
BYTES_MPTCPTRACE = 'bytes_mptcptrace'
# Total number of bytes of frames
BYTES_FRAMES_TOTAL = 'bytes_frames_total'
# Total number of frames
FRAMES_TOTAL = 'frames_total'
# Total number of retransmitted bytes of frames
BYTES_FRAMES_RETRANS = 'bytes_frames_retrans'
# Total number of retransmitted frames
FRAMES_RETRANS = 'frames_retrans'
# Throughput returned by tpctrace
THGPT_TCPTRACE = 'throughput_tcptrace'
# Throughput returned by mptcptrace
THGPT_MPTCPTRACE = 'throughput_mptcptrace'
# MPTCP bursts
BURSTS = 'bursts'
# Flights information
FLIGHT = 'flight'
# RTT info
RTT_SAMPLES = 'rtt_samples'
RTT_MIN = 'rtt_min'
RTT_MAX = 'rtt_max'
RTT_AVG = 'rtt_avg'
RTT_STDEV = 'rtt_stdev'
RTT_3WHS = 'rtt_from_3whs'
RTT_99P = 'rtt_99p'
RTT_98P = 'rtt_98p'
RTT_97P = 'rtt_97p'
RTT_95P = 'rtt_95p'
RTT_90P = 'rtt_90p'
RTT_75P = 'rtt_75p'
RTT_MED = 'rtt_median'
RTT_25P = 'rtt_25p'
# For aggregation
C2S = 'client2server'
S2C = 'server2client'
# Kept for compatibility reasons
S2D = C2S
D2S = S2C
# Number of SYN, FIN, RST and ACK seen on a subflow
NB_SYN = 'nb_syn'
NB_FIN = 'nb_fin'
NB_RST = 'nb_rst'
NB_ACK = 'nb_ack'
# Relative time to the beginning of the connection
TIME_FIRST_PAYLD = 'time_first_payload'
TIME_LAST_PAYLD = 'time_last_payload'
TIME_FIRST_ACK = 'time_first_ack'
# Timestamp (absolute values)
TIME_FIN_ACK_TCP = 'time_fin_ack_tcp'
TIME_LAST_ACK_TCP = 'time_last_ack_tcp'
TIME_LAST_PAYLD_TCP = 'time_last_payload_tcp'
TIME_LAST_PAYLD_WITH_RETRANS_TCP = 'time_last_payload_with_retrans_tcp'
# Time to live
TTL_MIN = 'time_to_live_min'
TTL_MAX = 'time_to_live_max'
# Segment size
SS_MIN = 'segment_size_min'
SS_MAX = 'segment_size_max'
# Congestion window
CWIN_MIN = 'minimum_in_flight_size'
CWIN_MAX = 'maximum_in_flight_size'
# Subflow inefficiencies
NB_RTX_RTO = 'nb_rtx_rto'
NB_RTX_FR = 'nb_rtx_fr'
NB_REORDERING = 'nb_reordering'
NB_NET_DUP = 'nb_network_duplicate'
NB_UNKNOWN = 'nb_unknown'
NB_FLOW_CONTROL = 'nb_flow_control'
NB_UNNECE_RTX_RTO = 'nb_unnecessary_rtx_rto'
NB_UNNECE_RTX_FR = 'nb_unnecessary_rtx_fr'
# Multipath TCP inefficiencies
REINJ_BYTES = 'reinj_bytes'
REINJ_PC = 'reinj_pc'
# To process both directions
DIRECTIONS = [C2S, S2C]
IPv4 = 'IPv4'
IPv6 = 'IPv6'
# IPv4 localhost address
LOCALHOST_IPv4 = '127.0.0.1'
# Port number of RedSocks
PORT_RSOCKS = '8123'
# Prefix of the Wi-Fi interface IP address
PREFIX_WIFI_IF = '192.168.'
# Size of Latin alphabet
SIZE_LAT_ALPH = 26
# IP address of the proxy (has to be overriden)
IP_PROXY = False
# Size of the header of frame of a MPTCP packet with data (16 + 20 + 52)
FRAME_MPTCP_OVERHEAD = 88
# Those values have to be overriden
PREFIX_IP_WIFI = False
PREFIX_IP_PROXY = False
IP_WIFI = False
IP_CELL = False
TIMESTAMP = 'timestamp'
CONN_ID = 'conn_id'
FLOW_ID = 'flow_id'
# Info from the SOCKS command
SOCKS_PORT = 'socks_port'
SOCKS_DADDR = 'socks_daddr'
# ADD_ADDRs and REMOVE_ADDRs
ADD_ADDRS = 'add_addrs'
RM_ADDRS = 'rm_addrs'
# Backup bit of a subflow
BACKUP = 'backup'
# Retransmission of DSS
RETRANS_DSS = 'retrans_dss'
if os.path.isfile('config.py'):
import config as conf
import collections
if isinstance(conf.IP_PROXY, collections.Iterable) and not isinstance(conf.IP_PROXY, str):
IP_PROXY = list(conf.IP_PROXY)
else:
IP_PROXY = [conf.IP_PROXY]
if isinstance(conf.PREFIX_IP_PROXY, collections.Iterable) and not isinstance(conf.PREFIX_IP_PROXY, str):
PREFIX_IP_PROXY = list(conf.PREFIX_IP_PROXY)
else:
PREFIX_IP_PROXY = [conf.PREFIX_IP_PROXY]
PREFIX_IP_WIFI = conf.PREFIX_IP_WIFI
##################################################
# CONNECTION RELATED #
##################################################
class BasicFlow(object):
""" Represent a flow between two hosts at transport layer """
attr = {C2S: {}, S2C: {}}
def __init__(self):
self.attr = {C2S: {}, S2C: {}}
def indicates_wifi_or_cell(self):
""" Given data of a mptcp connection subflow, indicates if comes from wifi or cell """
if self.attr[SADDR].startswith(PREFIX_WIFI_IF) or self.attr[DADDR].startswith(PREFIX_WIFI_IF) or self.attr[SADDR].startswith(PREFIX_IP_WIFI) \
or self.attr[DADDR].startswith(PREFIX_IP_WIFI) or (IP_WIFI and (self.attr[SADDR] in IP_WIFI)):
self.attr[IF] = WIFI
elif not IP_CELL or (self.attr[SADDR] in IP_CELL):
self.attr[IF] = CELL
else:
self.attr[IF] = "?"
def detect_ipv4(self):
""" Given the dictionary of a TCP connection, add the type IPv4 if it is an IPv4 connection """
saddr = self.attr[SADDR]
daddr = self.attr[DADDR]
num_saddr = saddr.split('.')
num_daddr = daddr.split('.')
if len(num_saddr) == 4 and len(num_daddr) == 4:
self.attr[TYPE] = IPv4
elif ":" in saddr and ":" in daddr:
self.attr[TYPE] = IPv6
class BasicConnection(object):
""" Represent a connection between two hosts at high level """
conn_id = ""
attr = {C2S: {}, S2C: {}}
def __init__(self, cid):
self.conn_id = cid
self.attr = {C2S: {}, S2C: {}}
##################################################
# (DE)SERIALIZATION OF OBJECTS #
##################################################
def save_object(obj, fname):
""" Save the object obj in the file with filename fname """
file = open(fname, 'wb')
file.write(pickle.dumps(obj))
file.close()
def load_object(fname):
""" Return the object contained in the file with filename fname """
file = open(fname, 'rb')
obj = pickle.loads(file.read())
file.close()
return obj
##################################################
# COMMON FUNCTIONS #
##################################################
def check_directory_exists(directory):
""" Check if the directory exists, and create it if needed
If directory is a file, exit the program
"""
if os.path.exists(directory):
if not os.path.isdir(directory):
print(directory + " is a file: stop", file=sys.stderr)
sys.exit(1)
else:
os.makedirs(directory)
def get_dir_from_arg(directory, end=''):
""" Get the abspath of the dir given by the user and append 'end' """
if end.endswith('.'):
end = end[:-1]
if directory.endswith('/'):
directory = directory[:-1]
return os.path.abspath(os.path.expanduser(directory)) + end
def is_number(s):
""" Check if the str s is a number """
try:
float(s)
return True
except ValueError:
return False
def move_file(from_path, to_path, print_out=sys.stderr):
""" Move a file, overwrite if needed """
try:
shutil.move(from_path, to_path)
except Exception:
# Destination already exists; remove it
os.remove(os.path.join(to_path, os.path.basename(from_path)))
shutil.move(from_path, to_path)
def tshark_stats(filtering, src_path, print_out=sys.stderr):
""" Filter src_path using the condition and write the result to print_out (open stream)
Raise a TSharkError in case of failure
"""
table = 'conv,tcp'
if filtering:
table += ',' + filtering
cmd = ['tshark', '-n', '-r', src_path, '-z', table, '-q']
if subprocess.call(cmd, stdout=print_out) != 0:
raise TSharkError("Error with filtering " + filtering + " for source " + src_path)
def long_ipv6_address(ip):
""" Return ip in long format, ex. 2001:db8::1 will be 2001:0db8:0000:0000:0000:0000:0000:0001 """
if ":" not in ip or "." in ip:
# IPv4 address, don't do anything (clean possible ':')
return ip.replace(":", "")
# Before ::, after ::
split_ip = []
decomposed_ip = [[], []]
# Compressed 0 in IPv6
split_ip = ip.split("::")
# Treat splitted parts of ip
for i in range(0, len(split_ip)):
decomposed_ip[i] = split_ip[i].split(":")
for j in range(0, len(decomposed_ip[i])):
while not len(decomposed_ip[i][j]) >= 4:
decomposed_ip[i][j] = "0" + decomposed_ip[i][j]
# Putting everything together
long_ip = ""
for d_ip in decomposed_ip[0]:
long_ip += d_ip + ":"
for i in range(0, 8 - len(decomposed_ip[0]) - len(decomposed_ip[1])):
long_ip += "0000:"
for d_ip in decomposed_ip[1]:
long_ip += d_ip + ":"
# Remove the last :
return long_ip[:-1]
##################################################
# PCAP #
##################################################
def save_data(filepath, dir_exp, data):
""" Using the name pcap_fname, save data in a file with filename fname in dir dir_exp """
path_name = os.path.join(
dir_exp, os.path.splitext(os.path.basename(filepath))[0])
try:
data_file = open(path_name, 'w')
pickle.dump(data, data_file)
data_file.close()
except IOError as e:
print(str(e) + ': no data file for ' + filepath, file=sys.stderr)
def clean_loopback_pcap(pcap_filepath, print_out=sys.stdout):
""" Remove noisy traffic (port 1984), see netstat """
tmp_pcap = tempfile.mkstemp(suffix='.pcap')[1]
cmd = ['tshark', '-Y', '!(tcp.dstport==1984||tcp.srcport==1984)&&!((ip.src==127.0.0.1)&&(ip.dst==127.0.0.1))', '-r',
pcap_filepath, '-w', tmp_pcap, '-F', 'pcap']
if subprocess.call(cmd, stdout=print_out) != 0:
print("Error in cleaning " + pcap_filepath, file=sys.stderr)
return
cmd = ['mv', tmp_pcap, pcap_filepath]
if subprocess.call(cmd, stdout=print_out) != 0:
print("Error in moving " + tmp_pcap + " to " + pcap_filepath, file=sys.stderr)
def get_date_as_int(pcap_fname):
""" Return the date of the pcap trace in int (like 20141230)
If there is no date, return None
"""
dash_index = pcap_fname.index("-")
start_index = pcap_fname[:dash_index].rindex("_")
try:
return int(pcap_fname[start_index + 1:dash_index])
except ValueError as e:
print(str(e) + ": get date as int for " + pcap_fname, file=sys.stderr)
return None
##################################################
# GRAPHS #
##################################################
def log_outliers(aggl_res, remove=False, m=3.0, log_file=sys.stdout):
""" Print on stderr outliers (value + filename), remove them from aggl_res if remove is True """
for condition, data_label in aggl_res.iteritems():
for label, data in data_label.iteritems():
num_data = [elem[0] for elem in data]
np_data = np.array(num_data)
d = np.abs(np_data - np.median(np_data))
mdev = np.median(d)
s = d / mdev if mdev else 0.0
if isinstance(s, float) and s == 0.0:
aggl_res[condition][label] = num_data
continue
new_list = []
for index in range(0, len(data)):
if s[index] >= m:
print("Outlier " + str(data[index][0]) + " of file " + data[index][1] + "; median = " +
str(np.median(np_data)) + ", mstd = " + str(mdev) + " and s = " + str(s[index]), file=log_file)
if remove:
continue
new_list.append(data[index][0])
aggl_res[condition][label] = new_list
def sort_and_aggregate(aggr_list):
""" Given a list of elements as returned by prepare_datasets_file, return a sorted and
aggregated list
List is ordered with elem at index 0, aggregated on elem at index 1 and indicates its source
with elem at index 2
"""
offsets = {}
total = 0
# Sort list by time
sorted_list = sorted(aggr_list, key=lambda elem: elem[0])
return_list = []
for elem in sorted_list:
# Manage the case when the flow name is seen for the first time
if elem[2] in offsets.keys():
total += elem[1] - offsets[elem[2]]
else:
total += elem[1]
offsets[elem[2]] = elem[1]
return_list.append([elem[0], total])
return return_list
# Initialize lock semaphore for matplotlib
# This is needed to avoid race conditions inside matplotlib
plt_lock = threading.Lock()
TIMEOUT = 60
def critical_plot_line_graph(data, label_names, formatting, xlabel, ylabel, title, graph_filepath, ymin=None, titlesize=20, y_log=False):
""" Critical part to plot a line graph """
count = 0
fig = plt.figure()
plt.clf()
fig, ax = plt.subplots()
# Create plots
try:
for dataset in data:
x_val = [x[0] for x in dataset]
y_val = [x[1] for x in dataset]
ax.plot(x_val, y_val, formatting[count], linewidth=2, label=label_names[count])
count += 1
ax.legend(loc='best', shadow=True, fontsize='x-large')
except ValueError as e:
print(str(e) + ": create plots: skip " + graph_filepath, file=sys.stderr)
return
# try:
# # Put a nicer background color on the legend.
# legend.get_frame().set_facecolor('#00FFCC')
# except AttributeError as e:
# # if we have no frame, it means we have no object...
# print(str(e) + ": change legend: skip " + graph_filepath, file=sys.stderr)
# print('label_names: ' + str(label_names), file=sys.stderr)
# print('formatting: ' + str(formatting), file=sys.stderr)
# print('data: ' + str(data), file=sys.stderr)
# return
fig.suptitle(title, fontsize=titlesize)
plt.xlabel(xlabel, fontsize=24, labelpad=-1)
plt.ylabel(ylabel, fontsize=24)
if y_log:
ax.set_xscale('log', linthreshx=1)
if ymin is not None:
plt.ylim(ymin=ymin)
try:
plt.savefig(graph_filepath)
except:
print('ERROR when creating graph for ' + graph_filepath, file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
return
# Don't forget to clean the plot, otherwise previous ones will be there!
try:
plt.clf()
except KeyError as e:
print(str(e) + ": when cleaning graph " + graph_filepath, file=sys.stderr)
plt.close()
def plot_line_graph(data, label_names, formatting, xlabel, ylabel, title, graph_filepath, ymin=None, titlesize=20, y_log=False):
""" Plot a line graph with data """
# no data, skip
pop_index = []
count = 0
for dataset in data:
if not dataset or len(dataset) <= 1:
# If no data, remove it from dataset and manage label name and formatting
# number = "One" if len(dataset) == 1 else "No"
# print(number + " data in dataset; remove it", file=sys.stderr)
pop_index.append(count)
count += 1
for index in reversed(pop_index):
data.pop(index)
label_names.pop(index)
formatting.pop(index)
if not data:
print("No data for " + title + ": skip", file=sys.stderr)
return
plt_lock.acquire()
try:
p = Process(target=critical_plot_line_graph, args=(
data, label_names, formatting, xlabel, ylabel, title, graph_filepath,), kwargs={'ymin': ymin, 'titlesize': titlesize, 'y_log': y_log},)
p.start()
p.join(TIMEOUT)
if p.is_alive():
print("A process must be terminated", file=sys.stderr)
p.terminate()
except Exception as e:
print("UNCATCHED EXCEPTION IN critical_plot_line_graph for " + graph_filepath, file=sys.stderr)
print(str(e), file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
plt_lock.release()
def plot_bar_chart(aggl_res, label_names, color, ecolor, ylabel, title, graph_fname):
""" Plot a bar chart with aggl_res """
plt_lock.acquire()
matplotlib.rcParams.update({'font.size': 8})
# Convert Python arrays to numpy arrays (easier for mean and std)
for cond, elements in aggl_res.iteritems():
for label, array in elements.iteritems():
elements[label] = np.array(array)
N = len(aggl_res)
nb_subbars = len(label_names)
ind = np.arange(N)
labels = []
values = {}
for label_name in label_names:
values[label_name] = ([], [])
width = (1.00 / nb_subbars) - (0.1 / nb_subbars) # the width of the bars
fig, ax = plt.subplots()
# So far, simply count the number of connections
for cond, elements in aggl_res.iteritems():
labels.append(cond)
for label_name in label_names:
values[label_name][0].append(elements[label_name].mean())
values[label_name][1].append(elements[label_name].std())
bars = []
labels_names = []
zero_bars = []
count = 0
for label_name in label_names:
(mean, std) = values[label_name]
bar = ax.bar(ind + (count * width), mean, width, color=color[count], yerr=std, ecolor=ecolor[count])
bars.append(bar)
zero_bars.append(bar[0])
labels_names.append(label_name)
count += 1
# add some text for labels, title and axes ticks
ax.set_ylabel(ylabel)
ax.set_title(title)
ax.set_xticks(ind + width)
ax.set_xticklabels(labels)
# Shrink current axis's height by 10% on the bottom
box = ax.get_position()
ax.set_position([box.x0, box.y0 + box.height * 0.1,
box.width, box.height * 0.9])
# Put a legend below current axis
ax.legend(zero_bars, label_names, loc='upper center', bbox_to_anchor=(0.5, -0.05), fancybox=True, shadow=True,
ncol=len(zero_bars))
def autolabel(rects):
# attach some text labels
for rect in rects:
height = rect.get_height()
ax.text(rect.get_x() + rect.get_width() / 2., 1.05 * height, '%d' % int(height),
ha='center', va='bottom')
for bar in bars:
autolabel(bar)
plt.savefig(graph_fname)
plt.close()
plt_lock.release()
def plot_cdfs(aggl_res, color, xlabel, base_graph_fname, ylim=None, xlim=None):
""" Plot all possible CDFs based on aggl_res.
aggl_res is a dictionary with the structure aggl_res[condition][element] = list of data
base_graph_fname does not have any extension
WARNING: this function assumes that the list of elements will remain the same for all conditions
"""
if len(aggl_res) < 1:
return
cond_init = aggl_res.keys()[0]
for element in aggl_res[cond_init].keys():
plt.figure()
plt.clf()
fig, ax = plt.subplots()
graph_fname = os.path.splitext(base_graph_fname)[0] + "_cdf_" + element + ".pdf"
for cond in aggl_res.keys():
try:
sample = np.array(sorted(aggl_res[cond][element]))
sorted_array = np.sort(sample)
yvals = np.arange(len(sorted_array)) / float(len(sorted_array))
if len(sorted_array) > 0:
# Add a last point
sorted_array = np.append(sorted_array, sorted_array[-1])
yvals = np.append(yvals, 1.0)
plt.plot(sorted_array, yvals, linewidth=2, color=color[aggl_res[cond].keys().index(element)], label=element)
except ZeroDivisionError as e:
print(str(e))
# Shrink current axis's height by 10% on the top
box = ax.get_position()
ax.set_position([box.x0, box.y0,
box.width, box.height * 0.9])
if ylim:
plt.ylim(ylim, 1.0)
if xlim:
plt.xlim(0.0, xlim)
# Put a legend above current axis
ax.legend(loc='lower center', bbox_to_anchor=(0.5, 1.05), fancybox=True, shadow=True, ncol=len(aggl_res))
plt.xlabel(xlabel, fontsize=18)
plt.ylabel("CDF", fontsize=18)
plt.savefig(graph_fname)
plt.close('all')
def plot_cdfs_natural(aggl_res, color, xlabel, base_graph_fname, xlim=None, ylim=None, ncol=None, label_order=None, xlog=False, ylog=False, ccdf=False):
""" Plot all possible CDFs based on aggl_res.
aggl_res is a dictionary with the structure aggl_res[condition][element] = list of data
base_graph_fname does not have any extension
WARNING: this function assumes that the list of elements will remain the same for all conditions
"""
if len(aggl_res) < 1:
return
for cond in aggl_res.keys():
plt.figure()
plt.clf()
fig, ax = plt.subplots()
graph_fname = os.path.splitext(base_graph_fname)[0] + "_cdf_" + cond + ".pdf"
cond_list = aggl_res[cond].keys()
if label_order:
cond_list = label_order
for element in cond_list:
try:
sample = np.array(sorted(aggl_res[cond][element]))
# f = open(os.path.splitext(base_graph_fname)[0] + '_' + cond + '_' + element, 'w')
# for i in range(len(sample)):
# f.write(str(sample[i]) + "\n")
# f.close()
sorted_array = np.sort(sample)
yvals = np.arange(len(sorted_array)) / float(len(sorted_array))
if len(sorted_array) > 0:
# Add a last point
sorted_array = np.append(sorted_array, sorted_array[-1])
yvals = np.append(yvals, 1.0)
if ccdf:
yvals = 1.0 - yvals
ax.plot(sorted_array, yvals, color=color[aggl_res[cond].keys().index(element)], label=element)
except ZeroDivisionError as e:
print(str(e))
# Shrink current axis's height by 10% on the top
# box = ax.get_position()
# ax.set_position([box.x0, box.y0,
# box.width, box.height * 0.9])
if xlim:
if xlog:
plt.xlim(0.1, xlim)
else:
plt.xlim(0.0, xlim)
if ylim:
plt.ylim(ylim, 1.0)
if not ncol:
ncol = len(aggl_res[cond])
if xlog:
ax.set_xscale('log')
if ylog:
ax.set_yscale('symlog', linthreshy=0.0000001)
# Put a legend above current axis
# ax.legend(loc='lower center', bbox_to_anchor=(0.5, 1.05), fancybox=True, shadow=True, ncol=ncol)
ax.legend(loc='lower right')
plt.xlabel(xlabel, fontsize=18)
if ccdf:
plt.ylabel("1 - CDF", fontsize=18)
else:
plt.ylabel("CDF", fontsize=18)
plt.savefig(graph_fname)
plt.close('all')
def plot_cdfs_with_direction(aggl_res, color, xlabel, base_graph_fname, natural=False, ylim=None, xlim=None, xlog=False, ylog=False, ccdf=False, label_order=None):
""" Plot all possible CDFs based on aggl_res.
aggl_res is a dictionary with the structure aggl_res[direction][condition][element] = list of data
WARNING: this function assumes that the list of elements will remain the same for all conditions
"""
if len(aggl_res) < 1:
return
for direction in aggl_res.keys():
if natural:
plot_cdfs_natural(aggl_res[direction], color, xlabel, os.path.splitext(base_graph_fname)[0] + '_' + direction, ylim=ylim, xlim=xlim, xlog=xlog, ylog=ylog, ccdf=ccdf, label_order=label_order)
else:
plot_cdfs(aggl_res[direction], color, xlabel, os.path.splitext(base_graph_fname)[0] + '_' + direction, ylim=ylim, xlim=xlim)
def scatter_plot(data, xlabel, ylabel, color, sums_dir_exp, base_graph_name, plot_identity=True, s=None, log_scale_x=True, log_scale_y=True, y_to_one=False, label_order=None):
""" Plot a scatter plot for each condition inside data (points are for apps)
base_graph_name is given without extension
"""
for condition, data_cond in data.iteritems():
plt.figure()
plt.clf()
fig, ax = plt.subplots()
scatters = []
apps = []
labels = data_cond.keys()
if label_order:
labels = label_order
for app_name in labels:
if app_name not in data_cond:
continue
x_val = [x[0] for x in data_cond[app_name]]
y_val = [x[1] for x in data_cond[app_name]]
if s:
scatters.append(ax.scatter(x_val, y_val, s=s[condition][app_name], label=app_name, color=color[app_name], alpha=1.))
else:
scatters.append(ax.scatter(x_val, y_val, label=app_name, color=color[app_name], alpha=1.))
apps.append(app_name)
if plot_identity:
identity = np.arange(0, 9999, 1000000)
ax.plot(identity, identity, 'k--')
plt.xlim(0.0, 10000)
plt.ylim(0.0, 10000)
# Shrink current axis by 20%
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
# Put a legend to the right of the current axis
ax.legend(scatters, apps, loc='center left', bbox_to_anchor=(1, 0.5), fontsize='large', scatterpoints=1)
plt.xlabel(xlabel, fontsize=18)
plt.ylabel(ylabel, fontsize=16)
if log_scale_y:
ax.set_yscale('symlog', linthreshy=1)
if log_scale_x:
ax.set_xscale('symlog', linthreshx=1)
plt.grid()
plt.xlim(0.0, plt.xlim()[1])
if y_to_one:
plt.ylim(0.0, 1.02)
else:
plt.ylim(0.0, max(plt.ylim()[1], 1))
# plt.annotate('1', xy=(0.57, 0.96), xycoords="axes fraction",
# xytext=(0.85, 0.85), textcoords='axes fraction',
# arrowprops=dict(facecolor='black', shrink=0.05),
# horizontalalignment='right', verticalalignment='bottom', size='large'
# )
#
# plt.annotate('2', xy=(0.38, 0.04), xycoords="axes fraction",
# xytext=(0.125, 0.2), textcoords='axes fraction',
# arrowprops=dict(facecolor='black', shrink=0.05),
# horizontalalignment='left', verticalalignment='top', size='large'
# )
graph_fname = base_graph_name + "_" + condition + ".pdf"
graph_full_path = os.path.join(sums_dir_exp, graph_fname)
plt.savefig(graph_full_path)
plt.clf()
plt.close('all')
def scatter_plot_with_direction(data, xlabel, ylabel, color, sums_dir_exp, base_graph_name, plot_identity=True, s=None, log_scale_x=True, log_scale_y=True, y_to_one=False, label_order=None):
""" Plot a scatter plot for each direction and condition inside data (points are for apps)
"""
for direction, data_dir in data.iteritems():
if s:
scatter_plot(data_dir, xlabel, ylabel, color, sums_dir_exp, os.path.splitext(base_graph_name)[0] + "_" + direction, plot_identity=plot_identity, s=s[direction], log_scale_x=log_scale_x, log_scale_y=log_scale_y, y_to_one=y_to_one, label_order=label_order)
else:
scatter_plot(data_dir, xlabel, ylabel, color, sums_dir_exp, os.path.splitext(base_graph_name)[0] + "_" + direction, plot_identity=plot_identity, log_scale_x=log_scale_x, log_scale_y=log_scale_y, y_to_one=y_to_one, label_order=label_order)
def density_plot(data, xlabel, color, graph_fname, xlim=None):
plt.figure()
plt.clf()
max_value = 0
# First find the max value
for condition, cond_data in data.iteritems():
if cond_data:
max_value = max(max_value, max(cond_data))
# Then do the plot work
for condition, cond_data in data.iteritems():
if cond_data:
density = gaussian_kde(cond_data)
xs = np.linspace(0, max_value, 1500)
density.covariance_factor = lambda: .25
density._compute_covariance()
plt.plot(xs, density(xs), color=color[condition], label=condition)
plt.legend(loc='upper right')
if xlim:
plt.xlim([0.0, xlim])
plt.xlabel(xlabel, fontsize=18)
plt.ylabel("Density function", fontsize=18)
plt.savefig(graph_fname)
plt.close('all')