|
11 | 11 | "3. AWS 클라우드에서 Deep Learning 환경 만들기\n",
|
12 | 12 | "4. Deep Learning 프레임워크 101\n",
|
13 | 13 | " - Apache MXNet\n",
|
14 |
| - " - [MXNet NDArray](./labs/MXNet-NDArray.ipynb)\n", |
15 |
| - " - [MXNet Symbol](./labs/MXNet-Symbol.ipynb)\n", |
16 |
| - " - [MXNet Module](./labs/MXNet-Module.ipynb)\n", |
17 |
| - " - TensorFlow\n", |
18 |
| - "5. Deep Learning Part 1 – Linear Regression ë° Classification\n", |
| 14 | + " - [MXNet NDArray](./labs/MXNet-NDArray.ipynb)\n", |
| 15 | + " - [MXNet Symbol](./labs/MXNet-Symbol.ipynb)\n", |
| 16 | + " - [MXNet Module](./labs/MXNet-Module.ipynb)\n", |
| 17 | + "5. Deep Learning Part 1 - Linear Regression ë° Classification\n", |
19 | 18 | " - [MXNet Linear regression](./labs/MXNet-Linear_Regression.ipynb)\n",
|
20 | 19 | " - [TensorFlow Linear regression](./labs/TensorFlow-Linear_regression.ipynb)\n",
|
21 | 20 | " - [MXNet Multiclass regression](./labs/MXNet-Multi_Class_regression.ipynb)\n",
|
22 |
| - "6. Deep Learning Part 2 – Convolutional Neural Network (CNN)\n", |
23 |
| - " - [MXNetì„ ì´ìš©í•œ MNIST 분류하는 CNN](./labs/CNN-mnist.ipynb)\n", |
24 |
| - " - [MXNetì˜ Gluonì„ ì´ìš©í•œ CNN](./labs/CNN-mnist-gluon.ipynb)\n", |
25 |
| - "7. Deep Learning Part 3 – Recurrent Neural Network (RNN)\n", |
26 |
| - " - [TensorFlow를 ì´ìš©í•œ SIN 함수 예측](./labs/RNN_LSTM_sin_prediction.ipynb)\n", |
27 |
| - " - [TensorFlow를 ì´ìš©í•œ 주가 예측](./labs/RNN_LSTM_StockPricePredcition.ipynb)\n" |
| 21 | + "6. Deep Learning Part 2 - Convolutional Neural Network (CNN)\n", |
| 22 | + " - [MXNet을 이용한 MNIST 분류하는 CNN](./labs/CNN-mnist.ipynb)\n", |
| 23 | + " - [MXNet의 Gluon을 이용한 CNN](./labs/CNN-mnist-gluon.ipynb)\n", |
| 24 | + "7. Deep Learning Part 3 - Recurrent Neural Network (RNN)\n", |
| 25 | + " - [TensorFlow를 이용한 SIN 함수 예측](./labs/RNN_LSTM_sin_prediction.ipynb)\n", |
| 26 | + " - [LSTM을 이용한 주가 예측](./labs/RNN_LSTM_StockPricePredcition.ipynb)\n" |
28 | 27 | ]
|
29 | 28 | },
|
30 | 29 | {
|
|
0 commit comments