-
-
Notifications
You must be signed in to change notification settings - Fork 35.7k
/
Copy pathtransmission_pars_fragment.glsl.js
235 lines (150 loc) · 7.14 KB
/
transmission_pars_fragment.glsl.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
export default /* glsl */`
#ifdef USE_TRANSMISSION
// Transmission code is based on glTF-Sampler-Viewer
// https://github.com/KhronosGroup/glTF-Sample-Viewer
uniform float transmission;
uniform float thickness;
uniform float attenuationDistance;
uniform vec3 attenuationColor;
#ifdef USE_TRANSMISSIONMAP
uniform sampler2D transmissionMap;
#endif
#ifdef USE_THICKNESSMAP
uniform sampler2D thicknessMap;
#endif
uniform vec2 transmissionSamplerSize;
uniform sampler2D transmissionSamplerMap;
uniform mat4 modelMatrix;
uniform mat4 projectionMatrix;
varying vec3 vWorldPosition;
// Mipped Bicubic Texture Filtering by N8
// https://www.shadertoy.com/view/Dl2SDW
float w0( float a ) {
return ( 1.0 / 6.0 ) * ( a * ( a * ( - a + 3.0 ) - 3.0 ) + 1.0 );
}
float w1( float a ) {
return ( 1.0 / 6.0 ) * ( a * a * ( 3.0 * a - 6.0 ) + 4.0 );
}
float w2( float a ){
return ( 1.0 / 6.0 ) * ( a * ( a * ( - 3.0 * a + 3.0 ) + 3.0 ) + 1.0 );
}
float w3( float a ) {
return ( 1.0 / 6.0 ) * ( a * a * a );
}
// g0 and g1 are the two amplitude functions
float g0( float a ) {
return w0( a ) + w1( a );
}
float g1( float a ) {
return w2( a ) + w3( a );
}
// h0 and h1 are the two offset functions
float h0( float a ) {
return - 1.0 + w1( a ) / ( w0( a ) + w1( a ) );
}
float h1( float a ) {
return 1.0 + w3( a ) / ( w2( a ) + w3( a ) );
}
vec4 bicubic( sampler2D tex, vec2 uv, vec4 texelSize, float lod ) {
uv = uv * texelSize.zw + 0.5;
vec2 iuv = floor( uv );
vec2 fuv = fract( uv );
float g0x = g0( fuv.x );
float g1x = g1( fuv.x );
float h0x = h0( fuv.x );
float h1x = h1( fuv.x );
float h0y = h0( fuv.y );
float h1y = h1( fuv.y );
vec2 p0 = ( vec2( iuv.x + h0x, iuv.y + h0y ) - 0.5 ) * texelSize.xy;
vec2 p1 = ( vec2( iuv.x + h1x, iuv.y + h0y ) - 0.5 ) * texelSize.xy;
vec2 p2 = ( vec2( iuv.x + h0x, iuv.y + h1y ) - 0.5 ) * texelSize.xy;
vec2 p3 = ( vec2( iuv.x + h1x, iuv.y + h1y ) - 0.5 ) * texelSize.xy;
return g0( fuv.y ) * ( g0x * textureLod( tex, p0, lod ) + g1x * textureLod( tex, p1, lod ) ) +
g1( fuv.y ) * ( g0x * textureLod( tex, p2, lod ) + g1x * textureLod( tex, p3, lod ) );
}
vec4 textureBicubic( sampler2D sampler, vec2 uv, float lod ) {
vec2 fLodSize = vec2( textureSize( sampler, int( lod ) ) );
vec2 cLodSize = vec2( textureSize( sampler, int( lod + 1.0 ) ) );
vec2 fLodSizeInv = 1.0 / fLodSize;
vec2 cLodSizeInv = 1.0 / cLodSize;
vec4 fSample = bicubic( sampler, uv, vec4( fLodSizeInv, fLodSize ), floor( lod ) );
vec4 cSample = bicubic( sampler, uv, vec4( cLodSizeInv, cLodSize ), ceil( lod ) );
return mix( fSample, cSample, fract( lod ) );
}
vec3 getVolumeTransmissionRay( const in vec3 n, const in vec3 v, const in float thickness, const in float ior, const in mat4 modelMatrix ) {
// Direction of refracted light.
vec3 refractionVector = refract( - v, normalize( n ), 1.0 / ior );
// Compute rotation-independent scaling of the model matrix.
vec3 modelScale;
modelScale.x = length( vec3( modelMatrix[ 0 ].xyz ) );
modelScale.y = length( vec3( modelMatrix[ 1 ].xyz ) );
modelScale.z = length( vec3( modelMatrix[ 2 ].xyz ) );
// The thickness is specified in local space.
return normalize( refractionVector ) * thickness * modelScale;
}
float applyIorToRoughness( const in float roughness, const in float ior ) {
// Scale roughness with IOR so that an IOR of 1.0 results in no microfacet refraction and
// an IOR of 1.5 results in the default amount of microfacet refraction.
return roughness * clamp( ior * 2.0 - 2.0, 0.0, 1.0 );
}
vec4 getTransmissionSample( const in vec2 fragCoord, const in float roughness, const in float ior ) {
float lod = log2( transmissionSamplerSize.x ) * applyIorToRoughness( roughness, ior );
return textureBicubic( transmissionSamplerMap, fragCoord.xy, lod );
}
vec3 volumeAttenuation( const in float transmissionDistance, const in vec3 attenuationColor, const in float attenuationDistance ) {
if ( isinf( attenuationDistance ) ) {
// Attenuation distance is +∞, i.e. the transmitted color is not attenuated at all.
return vec3( 1.0 );
} else {
// Compute light attenuation using Beer's law.
vec3 attenuationCoefficient = -log( attenuationColor ) / attenuationDistance;
vec3 transmittance = exp( - attenuationCoefficient * transmissionDistance ); // Beer's law
return transmittance;
}
}
vec4 getIBLVolumeRefraction( const in vec3 n, const in vec3 v, const in float roughness, const in vec3 diffuseColor,
const in vec3 specularColor, const in float specularF90, const in vec3 position, const in mat4 modelMatrix,
const in mat4 viewMatrix, const in mat4 projMatrix, const in float dispersion, const in float ior, const in float thickness,
const in vec3 attenuationColor, const in float attenuationDistance ) {
vec4 transmittedLight;
vec3 transmittance;
#ifdef USE_DISPERSION
float halfSpread = ( ior - 1.0 ) * 0.025 * dispersion;
vec3 iors = vec3( ior - halfSpread, ior, ior + halfSpread );
for ( int i = 0; i < 3; i ++ ) {
vec3 transmissionRay = getVolumeTransmissionRay( n, v, thickness, iors[ i ], modelMatrix );
vec3 refractedRayExit = position + transmissionRay;
// Project refracted vector on the framebuffer, while mapping to normalized device coordinates.
vec4 ndcPos = projMatrix * viewMatrix * vec4( refractedRayExit, 1.0 );
vec2 refractionCoords = ndcPos.xy / ndcPos.w;
refractionCoords += 1.0;
refractionCoords /= 2.0;
// Sample framebuffer to get pixel the refracted ray hits.
vec4 transmissionSample = getTransmissionSample( refractionCoords, roughness, iors[ i ] );
transmittedLight[ i ] = transmissionSample[ i ];
transmittedLight.a += transmissionSample.a;
transmittance[ i ] = diffuseColor[ i ] * volumeAttenuation( length( transmissionRay ), attenuationColor, attenuationDistance )[ i ];
}
transmittedLight.a /= 3.0;
#else
vec3 transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix );
vec3 refractedRayExit = position + transmissionRay;
// Project refracted vector on the framebuffer, while mapping to normalized device coordinates.
vec4 ndcPos = projMatrix * viewMatrix * vec4( refractedRayExit, 1.0 );
vec2 refractionCoords = ndcPos.xy / ndcPos.w;
refractionCoords += 1.0;
refractionCoords /= 2.0;
// Sample framebuffer to get pixel the refracted ray hits.
transmittedLight = getTransmissionSample( refractionCoords, roughness, ior );
transmittance = diffuseColor * volumeAttenuation( length( transmissionRay ), attenuationColor, attenuationDistance );
#endif
vec3 attenuatedColor = transmittance * transmittedLight.rgb;
// Get the specular component.
vec3 F = EnvironmentBRDF( n, v, specularColor, specularF90, roughness );
// As less light is transmitted, the opacity should be increased. This simple approximation does a decent job
// of modulating a CSS background, and has no effect when the buffer is opaque, due to a solid object or clear color.
float transmittanceFactor = ( transmittance.r + transmittance.g + transmittance.b ) / 3.0;
return vec4( ( 1.0 - F ) * attenuatedColor, 1.0 - ( 1.0 - transmittedLight.a ) * transmittanceFactor );
}
#endif
`;