-
Notifications
You must be signed in to change notification settings - Fork 4k
/
Copy pathclient.py
170 lines (137 loc) · 6.47 KB
/
client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import absolute_import, division, print_function
import argparse
import numpy as np
import shlex
import subprocess
import sys
import wave
import json
from deepspeech import Model, version
from timeit import default_timer as timer
try:
from shhlex import quote
except ImportError:
from pipes import quote
def convert_samplerate(audio_path, desired_sample_rate):
sox_cmd = 'sox {} --type raw --bits 16 --channels 1 --rate {} --encoding signed-integer --endian little --compression 0.0 --no-dither - '.format(quote(audio_path), desired_sample_rate)
try:
output = subprocess.check_output(shlex.split(sox_cmd), stderr=subprocess.PIPE)
except subprocess.CalledProcessError as e:
raise RuntimeError('SoX returned non-zero status: {}'.format(e.stderr))
except OSError as e:
raise OSError(e.errno, 'SoX not found, use {}hz files or install it: {}'.format(desired_sample_rate, e.strerror))
return desired_sample_rate, np.frombuffer(output, np.int16)
def metadata_to_string(metadata):
return ''.join(token.text for token in metadata.tokens)
def words_from_candidate_transcript(metadata):
word = ""
word_list = []
word_start_time = 0
# Loop through each character
for i, token in enumerate(metadata.tokens):
# Append character to word if it's not a space
if token.text != " ":
if len(word) == 0:
# Log the start time of the new word
word_start_time = token.start_time
word = word + token.text
# Word boundary is either a space or the last character in the array
if token.text == " " or i == len(metadata.tokens) - 1:
word_duration = token.start_time - word_start_time
if word_duration < 0:
word_duration = 0
each_word = dict()
each_word["word"] = word
each_word["start_time"] = round(word_start_time, 4)
each_word["duration"] = round(word_duration, 4)
word_list.append(each_word)
# Reset
word = ""
word_start_time = 0
return word_list
def metadata_json_output(metadata):
json_result = dict()
json_result["transcripts"] = [{
"confidence": transcript.confidence,
"words": words_from_candidate_transcript(transcript),
} for transcript in metadata.transcripts]
return json.dumps(json_result, indent=2)
class VersionAction(argparse.Action):
def __init__(self, *args, **kwargs):
super(VersionAction, self).__init__(nargs=0, *args, **kwargs)
def __call__(self, *args, **kwargs):
print('DeepSpeech ', version())
exit(0)
def main():
parser = argparse.ArgumentParser(description='Running DeepSpeech inference.')
parser.add_argument('--model', required=True,
help='Path to the model (protocol buffer binary file)')
parser.add_argument('--scorer', required=False,
help='Path to the external scorer file')
parser.add_argument('--audio', required=True,
help='Path to the audio file to run (WAV format)')
parser.add_argument('--beam_width', type=int,
help='Beam width for the CTC decoder')
parser.add_argument('--lm_alpha', type=float,
help='Language model weight (lm_alpha). If not specified, use default from the scorer package.')
parser.add_argument('--lm_beta', type=float,
help='Word insertion bonus (lm_beta). If not specified, use default from the scorer package.')
parser.add_argument('--version', action=VersionAction,
help='Print version and exits')
parser.add_argument('--extended', required=False, action='store_true',
help='Output string from extended metadata')
parser.add_argument('--json', required=False, action='store_true',
help='Output json from metadata with timestamp of each word')
parser.add_argument('--candidate_transcripts', type=int, default=3,
help='Number of candidate transcripts to include in JSON output')
parser.add_argument('--hot_words', type=str,
help='Hot-words and their boosts.')
args = parser.parse_args()
print('Loading model from file {}'.format(args.model), file=sys.stderr)
model_load_start = timer()
# sphinx-doc: python_ref_model_start
ds = Model(args.model)
# sphinx-doc: python_ref_model_stop
model_load_end = timer() - model_load_start
print('Loaded model in {:.3}s.'.format(model_load_end), file=sys.stderr)
if args.beam_width:
ds.setBeamWidth(args.beam_width)
desired_sample_rate = ds.sampleRate()
if args.scorer:
print('Loading scorer from files {}'.format(args.scorer), file=sys.stderr)
scorer_load_start = timer()
ds.enableExternalScorer(args.scorer)
scorer_load_end = timer() - scorer_load_start
print('Loaded scorer in {:.3}s.'.format(scorer_load_end), file=sys.stderr)
if args.lm_alpha and args.lm_beta:
ds.setScorerAlphaBeta(args.lm_alpha, args.lm_beta)
if args.hot_words:
print('Adding hot-words', file=sys.stderr)
for word_boost in args.hot_words.split(','):
word,boost = word_boost.split(':')
ds.addHotWord(word,float(boost))
fin = wave.open(args.audio, 'rb')
fs_orig = fin.getframerate()
if fs_orig != desired_sample_rate:
print('Warning: original sample rate ({}) is different than {}hz. Resampling might produce erratic speech recognition.'.format(fs_orig, desired_sample_rate), file=sys.stderr)
fs_new, audio = convert_samplerate(args.audio, desired_sample_rate)
else:
audio = np.frombuffer(fin.readframes(fin.getnframes()), np.int16)
audio_length = fin.getnframes() * (1/fs_orig)
fin.close()
print('Running inference.', file=sys.stderr)
inference_start = timer()
# sphinx-doc: python_ref_inference_start
if args.extended:
print(metadata_to_string(ds.sttWithMetadata(audio, 1).transcripts[0]))
elif args.json:
print(metadata_json_output(ds.sttWithMetadata(audio, args.candidate_transcripts)))
else:
print(ds.stt(audio))
# sphinx-doc: python_ref_inference_stop
inference_end = timer() - inference_start
print('Inference took %0.3fs for %0.3fs audio file.' % (inference_end, audio_length), file=sys.stderr)
if __name__ == '__main__':
main()