forked from kevinyliu/conditional-vae
-
Notifications
You must be signed in to change notification settings - Fork 0
/
decoder.py
203 lines (161 loc) · 8.89 KB
/
decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import torch
import torch.nn as nn
import torch.nn.functional as F
# seq2seq decoder
class BasicDecoder(nn.Module):
def __init__(self, vocab_size, embed_size, hidden_size, latent_size, num_layers, dpt=0.3, word_dpt=0.0, embedding=None):
super(BasicDecoder, self).__init__()
self.hidden_size = hidden_size
self.word_dpt = word_dpt
if embedding is not None:
self.embedding = embedding
else:
self.embedding = nn.Embedding(vocab_size, embed_size)
self.lstm = nn.LSTM(embed_size + latent_size, hidden_size, num_layers, dropout=dpt)
# self.linear = nn.Linear(hidden_size, vocab_size)
self.linear = nn.Linear(3*hidden_size, vocab_size)
self.dropout = nn.Dropout(p=dpt)
def forward(self, trg, z, encoded_src, hidden=None, word_dpt=0):
trg_len = trg.size(0)
batch_size = trg.size(1)
h_src = encoded_src[-1,:,:].view(1, batch_size, -1)
x = self.embedding(trg)
# word dropout
mask = torch.bernoulli((1 - self.word_dpt) * torch.ones(trg_len, batch_size)).unsqueeze(2).expand_as(x)
if x.is_cuda:
mask = mask.cuda()
x = x * mask
x = torch.cat((x, z.unsqueeze(0).repeat(trg.size(0),1,1)), dim=2)
output, hidden = self.lstm(x, hidden)
output = self.dropout(output)
output = torch.cat((output, h_src.repeat(trg_len,1,1)), dim=2) # to make it exactly like the vanilla seq2seq, otherwise comment out (and above too .linear)
output = F.log_softmax(self.linear(output), dim=2)
return output, hidden
class BasicAttentionDecoder(nn.Module):
def __init__(self, vocab_size, embed_size, hidden_size, latent_size, num_layers, dpt=0.3, embedding=None):
super(BasicAttentionDecoder, self).__init__()
if embedding is not None:
self.embedding = embedding
else:
self.embedding = nn.Embedding(vocab_size, embed_size)
self.embedding.weight.data.copy_((torch.rand(vocab_size, embed_size) - 0.5) * 2)
# projection of latent variable
#self.linear_z = nn.Linear(latent_size, hidden_size)
#self.lstm = nn.LSTM(embed_size + hidden_size, hidden_size, num_layers, dropout=dpt)
#self.linear1 = nn.Linear(3 * hidden_size, embed_size)
self.lstm = nn.LSTM(embed_size + latent_size, hidden_size, num_layers, dropout=dpt)
self.linear1 = nn.Linear(2 * hidden_size + latent_size, embed_size)
self.linear2 = nn.Linear(embed_size, vocab_size)
self.dropout = nn.Dropout(p=dpt)
# weight tying
self.linear2.weight = self.embedding.weight
def forward(self, trg, z, encoded_src, hidden=None):
trg_len = trg.size(0)
batch_size = trg.size(1)
x = self.embedding(trg)
x = self.dropout(x)
# projection of latent variable
#h_z = F.tanh(self.linear_z(z))
#x = torch.cat((x, h_z.unsqueeze(0).repeat(trg_len,1,1)), dim=2)
x = torch.cat((x, z.unsqueeze(0).repeat(trg_len,1,1)), dim=2)
output, hidden = self.lstm(x, hidden)
h_e = encoded_src.transpose(0, 1)
h_d = output.transpose(0, 1)
attn = torch.bmm(h_d, h_e.transpose(1, 2))
attn = F.softmax(attn, dim=2)
context = torch.bmm(attn, h_e).transpose(0, 1) # t_o x b x d
output = torch.cat((context, output, z.unsqueeze(0).repeat(trg_len,1,1)), dim=2)
#output = torch.cat((context, output, h_z.unsqueeze(0).repeat(trg_len,1,1)), dim=2)
output = torch.tanh(self.linear1(output))
output = self.dropout(output)
output = F.log_softmax(self.linear2(output), dim=2)
return output, hidden
# Dumb decoder: does not look at source at all
class DummyDecoder(nn.Module):
def __init__(self, vocab_size, embed_size, hidden_size, latent_size, num_layers, dpt=0.3, embedding=None):
super(DummyDecoder, self).__init__()
if embedding is not None:
self.embedding = embedding
else:
self.embedding = nn.Embedding(vocab_size, embed_size)
self.embedding.weight.data.copy_((torch.rand(vocab_size, embed_size) - 0.5) * 2)
#self.linear_z = nn.Linear(latent_size, hidden_size)
#self.lstm = nn.LSTM(embed_size + hidden_size, hidden_size, num_layers, dropout=dpt)
self.lstm = nn.LSTM(embed_size + latent_size, hidden_size, num_layers, dropout=dpt)
self.linear1 = nn.Linear(hidden_size, embed_size)
self.linear2 = nn.Linear(embed_size, vocab_size)
self.dropout = nn.Dropout(p=dpt)
# weight tying
self.linear2.weight = self.embedding.weight
def forward(self, trg, z, encoded_src, hidden=None):
trg_len = trg.size(0)
batch_size = trg.size(1)
x = self.embedding(trg)
x = self.dropout(x)
#h_z = F.tanh(self.linear_z(z))
#x = torch.cat((x, h_z.unsqueeze(0).repeat(trg.size(0),1,1)), dim=2)
x = torch.cat((x, z.unsqueeze(0).repeat(trg.size(0),1,1)), dim=2)
output, hidden = self.lstm(x, hidden) # t_o x b x 2h
output = torch.tanh(self.linear1(output))
output = self.dropout(output)
output = F.log_softmax(self.linear2(output), dim=2)
return output, hidden
class BahdanauAttnDecoder(nn.Module):
def __init__(self, vocab_size, embed_size, hidden_size, latent_size, num_layers, dpt=0.3, embedding=None):
super(BahdanauAttnDecoder, self).__init__()
self.num_layers = num_layers
if embedding is not None:
self.embedding = embedding
else:
self.embedding = nn.Embedding(vocab_size, embed_size)
self.embedding.weight.data.copy_((torch.rand(vocab_size, embed_size) - 0.5) * 2)
self.target_proj = nn.Linear(latent_size, 2 * latent_size)
self.lstm = nn.LSTM(embed_size + 2 * hidden_size + latent_size, hidden_size, num_layers, dropout=dpt)
# dropout for LSTM
self.dropout = nn.Dropout(p=dpt)
# for calculating attention scores
self.attn_annot = nn.Linear(2 * hidden_size, hidden_size) # input is |F| x B x 2N, output |F| x B x N
self.attn_hidden = nn.Linear(hidden_size, hidden_size) # each input is |F| x B x N, output |F| x B x N
self.other = nn.Linear(hidden_size, 1)
# final linear layer before applying (Log) Softmax
self.penult = nn.Linear(hidden_size + 2 * hidden_size, embed_size)
self.out = nn.Linear(embed_size, vocab_size)
self.out.weight = self.embedding.weight
def step_forward(self, word_input, last_hidden, last_context, annot_scores, annotations):
# TODO: return attention scores as well for visualization later
# input: word vec, h_{t-1}, c_{t-1}, annotation scores
# output: h_t, c_t
# construct new input by concatenating word vec with context vec
# dimension: 1 x B x (M + 2N)
new_input = torch.cat((word_input, last_context), dim=1).unsqueeze(0)
# calculate new hidden vector
new_output, new_hidden = self.lstm(new_input, last_hidden)
# scores computed using current hidden state, dimension: 1 x B x N
hidden_scores = self.attn_hidden(new_output)
# calculate attention weights. weight matrix size is |F| x B x 1
attn_weights = self.other(torch.tanh(hidden_scores + annot_scores))
attn_weights = F.softmax(attn_weights, dim=0)
# calculate new context vector, (size is |F| x B x 2N)
# by multiplying matrices of dimensions
new_context = torch.bmm(attn_weights.permute(1, 2, 0),
annotations.transpose(1, 0))[:, 0, :]
return new_output, new_hidden, new_context
def forward(self, trg, z, encoded_src, hidden=None, return_attn=False, word_dpt=0):
# embed the target words
trg_embeddings = self.embedding(trg)
z = torch.tanh(self.target_proj(z))
trg_embeddings = torch.cat((trg_embeddings, z.unsqueeze(0).repeat(trg.size(0),1,1)), dim=2)
# pre-compute annotation scores to save resources. dimension: |F| x B x N
annotations = encoded_src
annot_scores = self.attn_annot(encoded_src)
# init context vector as all 0s (dimension is B x 2N)
context = torch.zeros(encoded_src.size()[1:]).type_as(annotations)
all_scores = None
for trg in trg_embeddings:
output, hidden, context = self.step_forward(trg, hidden, context, annot_scores, annotations)
# append output (h_t) and context to the overall matrix
stacked = torch.cat((output, context.unsqueeze(0)), dim=2)
all_scores = stacked if all_scores is None else torch.cat((all_scores, stacked))
# apply final linear layer and then softmax
scores = F.log_softmax(self.out(self.penult(all_scores)), dim=2)
return scores, hidden