-
-
Notifications
You must be signed in to change notification settings - Fork 168
/
variance_test.go
100 lines (84 loc) · 2.19 KB
/
variance_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
package stats_test
import (
"math"
"testing"
"github.com/montanaflynn/stats"
)
func TestVariance(t *testing.T) {
_, err := stats.Variance([]float64{1, 2, 3})
if err != nil {
t.Errorf("Returned an error")
}
}
func TestPopulationVariance(t *testing.T) {
e, err := stats.PopulationVariance([]float64{})
if !math.IsNaN(e) {
t.Errorf("%.1f != %.1f", e, math.NaN())
}
if err != stats.EmptyInputErr {
t.Errorf("%v != %v", err, stats.EmptyInputErr)
}
pv, _ := stats.PopulationVariance([]float64{1, 2, 3})
a, err := stats.Round(pv, 1)
if err != nil {
t.Errorf("Returned an error")
}
if a != 0.7 {
t.Errorf("%.1f != %.1f", a, 0.7)
}
}
func TestSampleVariance(t *testing.T) {
m, err := stats.SampleVariance([]float64{})
if !math.IsNaN(m) {
t.Errorf("%.1f != %.1f", m, math.NaN())
}
if err != stats.EmptyInputErr {
t.Errorf("%v != %v", err, stats.EmptyInputErr)
}
m, _ = stats.SampleVariance([]float64{1, 2, 3})
if m != 1.0 {
t.Errorf("%.1f != %.1f", m, 1.0)
}
}
func TestCovariance(t *testing.T) {
s1 := []float64{1, 2, 3, 4, 5}
s2 := []float64{10, -51.2, 8}
s3 := []float64{1, 2, 3, 5, 6}
s4 := []float64{}
_, err := stats.Covariance(s1, s2)
if err == nil {
t.Errorf("Mismatched slice lengths should have returned an error")
}
a, err := stats.Covariance(s1, s3)
if err != nil {
t.Errorf("Should not have returned an error")
}
if a != 3.2499999999999996 {
t.Errorf("Covariance %v != %v", a, 3.2499999999999996)
}
_, err = stats.Covariance(s1, s4)
if err == nil {
t.Errorf("Empty slice should have returned an error")
}
}
func TestCovariancePopulation(t *testing.T) {
s1 := []float64{1, 2, 3.5, 3.7, 8, 12}
s2 := []float64{10, -51.2, 8}
s3 := []float64{0.5, 1, 2.1, 3.4, 3.4, 4}
s4 := []float64{}
_, err := stats.CovariancePopulation(s1, s2)
if err == nil {
t.Errorf("Mismatched slice lengths should have returned an error")
}
a, err := stats.CovariancePopulation(s1, s3)
if err != nil {
t.Errorf("Should not have returned an error")
}
if a != 4.191666666666666 {
t.Errorf("CovariancePopulation %v != %v", a, 4.191666666666666)
}
_, err = stats.CovariancePopulation(s1, s4)
if err == nil {
t.Errorf("Empty slice should have returned an error")
}
}