-
Notifications
You must be signed in to change notification settings - Fork 0
/
child_single_geo_in_region.Rmd
314 lines (265 loc) · 12.6 KB
/
child_single_geo_in_region.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
#### {{current_geo}}
```{r}
this_geo <- st_as_sf(loop_df) %>% filter(tomatch == "{{current_geo}}")
if (!is.na(st_crs(this_geo)$epsg)) {
ncdf <- st_transform(ncdf, st_crs(this_geo)$epsg)
nc_sw_sh <- st_transform(nc_sw_sh, st_crs(this_geo)$epsg)
}
this_roads <- st_intersection(ncdf, st_buffer(this_geo,0))
this_sw_sh <- st_intersection(nc_sw_sh, st_buffer(this_geo,0))
# need to handle the case where this_sw_sh or this_roads has 0 rows
has_roads <- nrow(this_roads) != 0
has_sw_sh <- nrow(this_sw_sh) != 0
has_both <- has_roads & has_sw_sh
# do not evaluate most of this child if does not
# reset
this_comb_total_score <-0
has0 <- F
has10 <- F
this0 <- ""
this10 <- ""
```
```{r, results = 'asis', eval=!has_roads}
cat("This area does not have known roads.")
```
```{r, results = 'asis', eval=!has_sw_sh}
cat("This area does not have known sidewalks or shoulders.")
```
```{r, eval=has_sw_sh & !has_roads}
this_centerline_miles <- 0 # this_centerline_miles is CENTERLINE MILES TOTAL
# this_sw/sh_miles is RIGHT LEFT MILES with SW or SH TOTAL
this_sw_sh_miles <- format(round(as.numeric(sum(st_length(this_sw_sh))/5280), 1),
digits = 1, nsmall=1, big.mark=",")
# this_comb_miles is RIGHT LEFT MILES where we could match SW/SH to a road segment
this_comb_miles <- 0
```
```{r, eval=!has_sw_sh & has_roads}
# this_centerline_miles is CENTERLINE MILES TOTAL
this_centerline_miles <- format(round(as.numeric(sum(st_length(this_roads))/5280), 1),
digits = 1, nsmall=1, big.mark=",")
# this_sw/sh_miles is RIGHT LEFT MILES with SW or SH TOTAL
this_sw_sh_miles <- 0
# this_sw/sh_miles is RIGHT LEFT MILES where we could match SW/SH to a road segment
this_comb_miles <- 0
```
```{r, eval=has_both}
# identified a mislabeled RD_LOG_ID in the sidewalk data for Madrone (as Main)
x <- st_as_sf(this_sw_sh) %>% mutate(LENGTH = as.integer(LENGTH)) %>% filter(RD_LOG_ID == 49435 & LENGTH > 500)
x$RD_LOG_ID <- 43809
# x will have 0 rows if we are not dealing with Manchester
# comb will have repeating segments when there are sh/sw on both sides
this_comb <- st_intersection(select(this_roads, RD_LOG_ID_R = RD_LOG_ID,
SEGMENT_ID_R = SEGMENT_ID,
FULL_NAME_R = FULL_NAME,
LENGTH_R = LENGTH,
road_class, RUCODE),
st_buffer(bind_rows(this_sw_sh, x), 50, endCapStyle="FLAT")) %>%
filter(RD_LOG_ID == RD_LOG_ID_R) %>%
distinct(RD_LOG_ID_R, SEGMENT_ID_R, RD_LOG_ID, SEGMENT_ID, SIDE_OF_RO, .keep_all = TRUE) %>%
mutate(distance = st_length(.))
# this_centerline_miles is CENTERLINE MILES TOTAL
this_centerline_miles <- format(round(as.numeric(sum(st_length(this_roads))/5280), 1),
digits = 1, nsmall=1, big.mark=",")
# this_sw/sh_miles is RIGHT LEFT MILES with SW or SH TOTAL
this_sw_sh_miles <- format(round(as.numeric(sum(st_length(this_sw_sh))/5280), 1),
digits = 1, nsmall=1, big.mark=",")
# this_sw/sh_miles is RIGHT LEFT MILES where we could match SW/SH to a road segment
this_comb_miles <- format(round(as.numeric(sum(st_length(this_comb))/5280), 1),
digits = 1, nsmall=1, big.mark=",")
this_msg <- ifelse(this_comb_miles > this_sw_sh_miles,
"There are duplicate segments matching.",
"")
```
Within this area, there are `r this_centerline_miles` centerline road miles; `r this_sw_sh_miles` miles of recorded sidewalk or shoulder (either side of road); and `r this_comb_miles` miles where we could match the recorded sidewalk or shoulder to a road segment (either side of road). `r this_msg`
```{r, eval=has_both & has_points}
# see if this geo has a point (is it an area around a place, like a school)
this_point <- st_as_sf(b_pointdf) %>%
filter(NAME == this_geo$tomatch)
```
```{r, eval=has_both}
#| fig.width = 30,
#| fig.height = 8,
#| out.width = '100%',
#| dpi = 96
p1 <- kitsap +
geom_sf(data = this_geo, aes(fill = 1), lwd = 0, alpha = 0.8, show.legend = FALSE) +
#geom_sf(data = this_roads, aes(color = 1), color = "#999999", alpha = 0.5) +
geom_sf(data = this_sw_sh, aes(color = as.factor(TYPE)), show.legend = "line") +
sw_sh_col +
theme_void() +
labs(title = "{{current_geo}}",#paste("Map for","{{current_geo}}"),
color = "")
r <- ggplot() +
geom_sf(data = this_geo, aes(fill = 1), alpha = 0.4, lwd = 0, show.legend = FALSE) +
geom_sf(data = this_roads, aes(color = 1), color = "#999999", alpha = 0.5) +
geom_sf(data = filter(this_sw_sh, SIDE_OF_RO == "RIGHT"), aes(color = as.factor(TYPE))) +
{if(has_points) geom_sf(data = this_point,
aes(color = 1), color = "black", show.legend = FALSE)} +
sw_sh_col +
labs(title = "Right",
color = "") +
theme_void() +
theme(plot.title = element_text(hjust = 0.5))
l <- ggplot() +
geom_sf(data = this_geo, aes(fill = 1), alpha = 0.4, lwd = 0, show.legend = FALSE) +
geom_sf(data = this_roads, aes(color = 1), color = "#999999", alpha = 0.5) +
geom_sf(data = filter(this_sw_sh, SIDE_OF_RO == "LEFT"), aes(color = as.factor(TYPE))) +
{if(has_points) geom_sf(data = this_point,
aes(color = 1), color = "black", show.legend = FALSE)} +
sw_sh_col +
labs(title = "Left",
color = "") +
theme_void() +
theme(plot.title = element_text(hjust = 0.5))
# calculate the number of rows needed to display the legend
this_rows <- max(4,ceiling(n_distinct(as.character(this_sw_sh$TYPE))/3))
library(patchwork)
((p1 +
plot_layout(guides = 'collect') +
labs(color = "") &
theme(legend.position = "bottom") &
guides(color=guide_legend(nrow=this_rows,byrow=TRUE))) +
(l + theme(legend.position = "none") ) +
(r + theme(legend.position = "none") ) )
detach("package:patchwork", unload=TRUE)
```
```{r eval=has_both}
this_comb_stand <- this_comb %>%
st_set_geometry(., NULL) %>%
mutate(setting = ifelse(RUCODE == 1, "Rural",
ifelse(RUCODE == 2, "Urban", "Unknown")),
ped_type = sub("\\:.*", "", TYPE),
nn = paste(sub("paved ","",tolower(ped_type)), tolower(SIDE_OF_RO),sep ="_")) %>%
pivot_wider(id_cols = c(-RD_LOG_ID:-TYPE,-ped_type),
names_from = nn,
values_from = WIDTH,
values_fn = mean) %>%
left_join(road_standards) %>%
rowwise() %>% # now make sure that have all the columns
mutate(sidewalk_left = ifelse("sidewalk_left" %in% names(.), sidewalk_left, NA),
sidewalk_right = ifelse("sidewalk_right" %in% names(.), sidewalk_right, NA),
shoulder_left = ifelse("shoulder_left" %in% names(.), shoulder_left, NA),
shoulder_right = ifelse("shoulder_right" %in% names(.), shoulder_right, NA)
)
this_comb_score <- this_comb_stand %>%
mutate(score_left = getSideScore(standard_sidewalk, standard_shoulder,
sidewalk_left, shoulder_left),
score_right = getSideScore(standard_sidewalk, standard_shoulder,
sidewalk_right, shoulder_right),
score = score_left + score_right)
this_comb_score2 <- st_set_geometry(this_roads, NULL) %>%
select(RD_LOG_ID_R = RD_LOG_ID, SEGMENT_ID_R = SEGMENT_ID,
FULL_NAME_R = FULL_NAME, road_class, RUCODE, LENGTH) %>%
mutate(setting = ifelse(RUCODE == 1, "Rural",
ifelse(RUCODE == 2, "Urban", "Unknown"))) %>%
left_join(this_comb_score) %>%
mutate(the_score = ifelse(is.na(score), 0, score),
the_length = ifelse(is.na(distance), LENGTH, distance),
w_score = the_score*the_length)
this_comb_total_score <- sum(this_comb_score2$w_score)/sum(this_comb_score2$the_length)
# do any with sw sh have score 0?
has0 <- any(this_comb_score$score == 0)
# do any with sw sh have score 10?
has10 <- any(this_comb_score$score == 10)
this0 <- ifelse(has0, "A few segments where sidewalks or shoulders were matched to a road segment, but the resulting score was 0 are shown here. ","")
this10 <- ifelse(has10, "A few good (score 10) segments are shown here. ","")
```
**The overall score for pedestrian facilities in {{current_geo}} is `r nice_comma(this_comb_total_score)`, `r getScoreInterpretation(this_comb_total_score)`.**
`r this0`
```{r eval=has_both & has0}
roads_0 <- this_comb_score %>%
filter(score == 0) %>%
select(setting, road_class, FULL_NAME_R,
sidewalk_right, sidewalk_left,
shoulder_right, shoulder_left,
standard_sidewalk, standard_shoulder)
knitr::kable(head(roads_0) %>%
rename(Setting = setting,
Class = road_class,
Name = FULL_NAME_R,
`sidewalk R` = sidewalk_right,
`sidewalk L` = sidewalk_left,
`shoulder R` = shoulder_right,
`shoulder L` = shoulder_left,
`standard sidewalk` = standard_sidewalk,
`standard shoulder` = standard_shoulder)) %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
```
`r this10`
```{r eval=has_both & has10}
roads_10 <- this_comb_score %>%
filter(score == 10) %>%
select(setting, road_class, FULL_NAME_R,
sidewalk_right, sidewalk_left,
shoulder_right, shoulder_left,
standard_sidewalk, standard_shoulder)
knitr::kable(head(roads_10) %>%
rename(Setting = setting,
Class = road_class,
Name = FULL_NAME_R,
`sidewalk R` = sidewalk_right,
`sidewalk L` = sidewalk_left,
`shoulder R` = shoulder_right,
`shoulder L` = shoulder_left,
`standard sidewalk` = standard_sidewalk,
`standard shoulder` = standard_shoulder)) %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
```
```{r}
# add the score to the score breakdowns
if (!exists(deparse(substitute(this_comb_total_score)))){
this_comb_total_score <- 0
}
score_breakdowns$Score[score_breakdowns$Area == "{{current_geo}}"] <- this_comb_total_score
```
Overall, for {{current_geo}}, the pedestrian facilities are evaluated as so.
```{r, eval=has_both}
# problem, we probably want to color the geometry of the sw/sh segments, but how to get the roads
# that don't have a match and set them at 0
# this is the challenge now
this_comb_map <- st_as_sf(this_roads) %>%
select(RD_LOG_ID_R = RD_LOG_ID, SEGMENT_ID_R = SEGMENT_ID,
FULL_NAME_R = FULL_NAME, road_class, RUCODE, LENGTH) %>%
mutate(setting = ifelse(RUCODE == 1, "Rural",
ifelse(RUCODE == 2, "Urban", "Unknown"))) %>%
left_join(this_comb_score2) %>%
rowwise() %>%
mutate(interpretation = getScoreInterpretation(the_score))
this_comb_map$interpretation <- factor(this_comb_map$interpretation,
levels = score_interpretation$interpretation)
this_comb_map <- this_comb_map %>%
group_by(interpretation) %>% # ".x" is refers to the current group:
group_modify(~ st_union(.x) %>% as_tibble()) %>%
ungroup() %>%
st_as_sf()
ggplot() +
geom_sf(data = this_geo, aes(fill = 1), alpha = 0.1, lwd = 0, show.legend = FALSE) +
#geom_sf(data = this_roads, aes(color = 1), color = "#808080", show.legend = FALSE) +
geom_sf(data = this_comb_map, aes(color = interpretation), show.legend = "line") +
score_col +
theme_void() +
labs(title = paste("Calculated Pedestrian Facility Score:","{{current_geo}}"),
caption = "Data source: Kitsap GIS, scores calculated",
color = "Score Interpretation")
```
```{r, eval=has_both}
knitr::kable(
this_comb_map %>%
mutate(LENGTH = as.integer(st_length(.))) %>%
st_set_geometry(., NULL) %>%
group_by(interpretation) %>%
summarise(Miles = nice_comma(sum(LENGTH)/5280,1),
.groups = "drop") %>%
bind_rows(this_comb_map %>%
mutate(LENGTH = as.integer(st_length(.))) %>%
st_set_geometry(., NULL) %>%
mutate(interpretation = "Total") %>%
group_by(interpretation) %>%
summarise(Miles = nice_comma(sum(LENGTH)/5280,1),
.groups = "drop")
) %>%
rename(`Score Interpretation` = interpretation),
caption = "Miles here more than overall miles is indicative of multiple shoulder or sidewalk geometries matching the same portion of road centerline on the same side of the road. This kind of data error is expected given the state of the sidewalk and shoulder data."
) %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
```