-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVectorization.py
187 lines (168 loc) · 5.92 KB
/
Vectorization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import numpy as np
import random
import pickle
import matplotlib.pyplot as plt
from datetime import datetime
# loading training set features
start_time = datetime.now()
f = open("Datasets/train_set_features.pkl", "rb")
train_set_features2 = pickle.load(f)
f.close()
# reducing feature vector length
features_STDs = np.std(a=train_set_features2, axis=0)
train_set_features = train_set_features2[:, features_STDs > 52.3]
# changing the range of data between 0 and 1
train_set_features = np.divide(train_set_features, train_set_features.max())
# loading training set labels
f = open("Datasets/train_set_labels.pkl", "rb")
train_set_labels = pickle.load(f)
f.close()
# ------------
# loading test set features
f = open("Datasets/test_set_features.pkl", "rb")
test_set_features2 = pickle.load(f)
f.close()
# reducing feature vector length
features_STDs = np.std(a=test_set_features2, axis=0)
test_set_features = test_set_features2[:, features_STDs > 48]
# changing the range of data between 0 and 1
test_set_features = np.divide(test_set_features, test_set_features.max())
# loading test set labels
f = open("Datasets/test_set_labels.pkl", "rb")
test_set_labels = pickle.load(f)
f.close()
# ------------
# preparing our training and test sets - joining datasets and lables
train_set = []
test_set = []
for i in range(len(train_set_features)):
label = np.array([0, 0, 0, 0])
label[int(train_set_labels[i])] = 1
label = label.reshape(4, 1)
train_set.append((train_set_features[i].reshape(102, 1), label))
for i in range(len(test_set_features)):
label = np.array([0, 0, 0, 0])
label[int(test_set_labels[i])] = 1
label = label.reshape(4, 1)
test_set.append((test_set_features[i].reshape(102, 1), label))
# shuffle
random.shuffle(train_set)
random.shuffle(test_set)
minimize_train_set = train_set[:200]
# sigmoid activation
def sigmoid(x):
ans = 1 / (1 + np.exp(-x))
return ans
# create randoms
np.random.seed(1)
# epoch size
epoch = 10
# batch size
batch_size = 10
# mini batch data num
batch_num = int(200 / 10)
learning_rate = 0.15
np.random.seed(1)
# layers
n_x = 102
n_h_1 = 150
n_h_2 = 60
n_y = 4
# initilize wights and bias for layers
W1 = np.random.randn(n_h_1, n_x)
b1 = np.zeros((n_h_1, 1))
W2 = np.random.randn(n_h_2, n_h_1)
b2 = np.zeros((n_h_2, 1))
W3 = np.random.randn(n_y, n_h_2)
b3 = np.zeros((n_y, 1))
costs1 = []
costs2 = []
for epoch_count in range(epoch):
# shuffle
total_cost = 0
print("epoch_count " + str(epoch_count + 1))
random.shuffle(train_set)
minimize_train_set = train_set[:200]
for batch_count in range(batch_size):
print("batch count " + str(batch_count + 1))
# initialize gradians for weights and bias off all layers
grad_W1 = np.zeros((n_h_1, n_x))
grad_W2 = np.zeros((n_h_2, n_h_1))
grad_W3 = np.zeros((n_y, n_h_2))
grad_b1 = np.zeros((n_h_1, 1))
grad_b2 = np.zeros((n_h_2, 1))
grad_b3 = np.zeros((n_y, 1))
for i in range(batch_num):
print("mini batch num is " + str(i + 1))
# just feed forward
reshape_train = minimize_train_set[batch_count * 20 + i][0]
reshape_train_lables = minimize_train_set[batch_count * 20 + i][1]
S1 = sigmoid(W1 @ reshape_train + b1)
S2 = sigmoid(W2 @ S1 + b2)
S3 = sigmoid(W3 @ S2 + b3)
temp_cost = 0
# calculate cost
for s in range(len(S3)):
temp_cost += pow(S3[s][0] - reshape_train_lables[s][0], 2)
total_cost += temp_cost
# weight
grad_W3 += (2 * (S3 - reshape_train_lables) * S3 * (1 - S3)) @ np.transpose(S2)
# bias
grad_b3 += 2 * (S3 - reshape_train_lables) * S3 * (1 - S3)
# third layer
# activation
delta_3 = np.zeros((n_h_2, 1))
delta_3 += np.transpose(W3) @ (2 * (S3 - reshape_train_lables) * (S3 * (1 - S3)))
# weight
grad_W2 += (S2 * (1 - S2) * delta_3) @ np.transpose(S1)
# bias
grad_b2 += delta_3 * S2 * (1 - S2)
# second layer
# activation
delta_2 = np.zeros((n_h_1, 1))
delta_2 += np.transpose(W2) @ (delta_3 * S2 * (1 - S2))
# weight
grad_W1 += (delta_2 * S1 * (1 - S1)) @ np.transpose(reshape_train)
# bias
grad_b1 += delta_2 * S1 * (1 - S1)
W3 = W3 - (learning_rate * (grad_W3 / batch_size))
W2 = W2 - (learning_rate * (grad_W2 / batch_size))
W1 = W1 - (learning_rate * (grad_W1 / batch_size))
b3 = b3 - (learning_rate * (grad_b3 / batch_size))
b2 = b2 - (learning_rate * (grad_b2 / batch_size))
b1 = b1 - (learning_rate * (grad_b1 / batch_size))
cost = 0
# caluclate cost for batch after train
for train_data in train_set[:100]:
S0 = train_data[0]
S1 = sigmoid(W1 @ S0 + b1)
S2 = sigmoid(W2 @ S1 + b2)
S3 = sigmoid(W3 @ S2 + b3)
for j in range(4):
cost += np.power((S3[j, 0] - train_data[1][j, 0]), 2)
costs1.append(total_cost / 1962)
costs2.append(cost / 1962)
print("cost of this epoch is " + str(total_cost))
print("average cost epochs : " + str(sum(costs1)))
print("average cost all of epoch : " + str(sum(costs2)))
epoch_list = [c + 1 for c in range(epoch)]
# show costs
plt.plot(epoch_list, costs1)
plt.plot(epoch_list, costs2)
plt.show()
counter = 0
# calculate accuracy
for i in range(len(minimize_train_set)):
reshape_train = minimize_train_set[i][0]
reshape_train_label = minimize_train_set[i][1]
S0 = reshape_train
S1 = sigmoid(W1 @ S0 + b1)
S2 = sigmoid(W2 @ S1 + b2)
S3 = sigmoid(W3 @ S2 + b3)
index = np.where(S3 == np.amax(S3))
max_index = np.where(reshape_train_label == np.amax(reshape_train_label))
if index == max_index:
counter += 1
print("Accuracy is : " + str(counter / 200))
end_time = datetime.now()
print('Duration: {}'.format(end_time - start_time))